Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(45): 16968-16977, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36350092

ABSTRACT

Substitutional transition metal doping in two-dimensional (2D) layered dichalcogenides is of fundamental importance in manipulating their electrical, excitonic, magnetic, and catalytic properties through the variation of the d-electron population. Yet, most doping strategies are spatially global, with dopants embedded concurrently during the synthesis. Here, we report an area-selective doping scheme for W-based dichalcogenide single layers, in which pre-patterned graphene is used as a reaction mask in the high-temperature substitution of the W sublattice. The chemical inertness of the thin graphene layer can effectively differentiate the spatial doping reaction, allowing for local manipulation of the host 2D materials. Using graphene as a mask is also beneficial in the sense that it also acts as an insertion layer between the contact metal and the doped channel, capable of depinning the Fermi level for low contact resistivity. Tracing doping by means of chalcogen labelling, deliberate Cr embedment is found to become energetically favorable in the presence of chalcogen deficiency, assisting the substitution of the W sublattice in the devised chemical vapor doping scheme. Atomic characterization using scanning transmission electron microscopy (STEM) shows that the dopant concentration is controllable and varies linearly with the reaction time in the current doping approach. Using the same method, other transition metal atoms such as Mo, V, and Fe can also be doped in the patterned area.

2.
Front Physiol ; 13: 931567, 2022.
Article in English | MEDLINE | ID: mdl-36105279

ABSTRACT

Male Aedes aegypti (Ae. aegypti) mosquitoes rely on hearing to identify conspecific females for mating, with the male attraction to the sound of flying females ("phonotaxis") an important behavior in the initial courtship stage. Hearing thus represents a promising target for novel methods of mosquito control, and hearing behaviors (such as male phonotaxis) can be targeted via the use of sound traps. These traps unfortunately have proven to be relatively ineffective during field deployment. Shifting the target from hearing behavior to hearing function could therefore offer a novel method of interfering with Ae. aegypti mating. Numerous neurotransmitters, including serotonin (5-hydroxytryptamine, or 5-HT) and octopamine, are expressed in the male ear, with modulation of the latter proven to influence the mechanical responses of the ear to sound. The effect of serotonin modulation however remains underexplored despite its significant role in determining many key behaviors and biological processes of animals. Here we investigated the influence of serotonin on the Ae. aegypti hearing function and behaviors. Using immunohistochemistry, we found significant expression of serotonin in the male and female Ae. aegypti ears. In the male ear, presynaptic sites identified via antibody labelling showed only partial overlap with serotonin. Next, we used RT-qPCR to identify and quantify the expression levels of three different serotonin receptor families (5-HT1, 5-HT2, and 5-HT7) in the mosquito heads and ears. Although all receptors were identified in the ears of both sexes, those from the 5-HT7 family were significantly more expressed in the ears relative to the heads. We then thoracically injected serotonin-related compounds into the mosquitoes and found a significant, reversible effect of serotonin exposure on the male ear mechanical tuning frequency. Finally, oral administration of a serotonin-synthesis inhibitor altered male phonotaxis. The mosquito serotonergic system and its receptors thus represent interesting targets for novel methods of mosquito, and thus disease, control.

3.
Cell Rep ; 36(12): 109729, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34551295

ABSTRACT

Human ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) is an evolutionarily conserved core subunit of mitochondrial respiratory chain complex III. We recently identified the disease-associated variants of UQCRC1 from patients with familial parkinsonism, but its function remains unclear. Here we investigate the endogenous function of UQCRC1 in the human neuronal cell line and the Drosophila nervous system. Flies with neuronal knockdown of uqcrc1 exhibit age-dependent parkinsonism-resembling defects, including dopaminergic neuron reduction and locomotor decline, and are ameliorated by UQCRC1 expression. Lethality of uqcrc1-KO is also rescued by neuronally expressing UQCRC1, but not the disease-causing variant, providing a platform to discern the pathogenicity of this mutation. Furthermore, UQCRC1 associates with the apoptosis trigger cytochrome c (cyt-c), and uqcrc1 deficiency increases cyt-c in the cytoplasmic fraction and activates the caspase cascade. Depleting cyt-c or expression of the anti-apoptotic p35 ameliorates uqcrc1-mediated neurodegeneration. Our findings identify a role for UQCRC1 in regulating cyt-c-induced apoptosis.


Subject(s)
Dopaminergic Neurons/metabolism , Drosophila Proteins/metabolism , Electron Transport Complex III/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cytochromes c/metabolism , Cytoplasm/metabolism , Dopaminergic Neurons/cytology , Drosophila/growth & development , Drosophila/metabolism , Drosophila Proteins/genetics , Electron Transport Complex III/deficiency , Electron Transport Complex III/genetics , Gene Editing , Humans , Larva/metabolism , Locomotion , Mitochondria/metabolism , Mitochondria/pathology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Protein Binding , RNA Interference , Reactive Oxygen Species/metabolism
4.
Aging Cell ; 20(6): e13379, 2021 06.
Article in English | MEDLINE | ID: mdl-34061429

ABSTRACT

Increased levels of dysfunctional mitochondria within skeletal muscle are correlated with numerous age-related physiopathological conditions. Improving our understanding of the links between mitochondrial function and muscle proteostasis, and the role played by individual genes and regulatory networks, is essential to develop treatments for these conditions. One potential player is the mitochondrial outer membrane protein Fis1, a crucial fission factor heavily involved in mitochondrial dynamics in yeast but with an unknown role in higher-order organisms. By using Drosophila melanogaster as a model, we explored the effect of Fis1 mutations generated by transposon Minos-mediated integration. Mutants exhibited a higher ratio of damaged mitochondria with age as well as elevated reactive oxygen species levels compared with controls. This caused an increase in oxidative stress, resulting in large accumulations of ubiquitinated proteins, accelerated muscle function decline, and mitochondrial myopathies in young mutant flies. Ectopic expression of Fis1 isoforms was sufficient to suppress this phenotype. Loss of Fis1 led to unbalanced mitochondrial proteostasis within fly muscle, decreasing both flight capabilities and lifespan. Fis1 thus clearly plays a role in fly mitochondrial dynamics. Further investigations into the detailed function of Fis1 are necessary for exploring how mitochondrial function correlates with muscle health during aging.


Subject(s)
Drosophila melanogaster/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Proteostasis/genetics , Aging , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...