Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Wound Care (New Rochelle) ; 11(6): 330-359, 2022 06.
Article in English | MEDLINE | ID: mdl-34128387

ABSTRACT

Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.


Subject(s)
Precision Medicine , Wound Healing , Diagnostic Imaging/methods , Randomized Controlled Trials as Topic
2.
Sci Transl Med ; 8(320): 320ra4, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26738797

ABSTRACT

Local recurrence is a common cause of treatment failure for patients with solid tumors. Intraoperative detection of microscopic residual cancer in the tumor bed could be used to decrease the risk of a positive surgical margin, reduce rates of reexcision, and tailor adjuvant therapy. We used a protease-activated fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue sarcoma (STS) and ex vivo in a first-in-human phase 1 clinical trial. In mice, intravenous injection of LUM015 labeled tumor cells, and residual fluorescence within the tumor bed predicted local recurrence. In 15 patients with STS or breast cancer, intravenous injection of LUM015 before surgery was well tolerated. Imaging of resected human tissues showed that fluorescence from tumor was significantly higher than fluorescence from normal tissues. LUM015 biodistribution, pharmacokinetic profiles, and metabolism were similar in mouse and human subjects. Tissue concentrations of LUM015 and its metabolites, including fluorescently labeled lysine, demonstrated that LUM015 is selectively distributed to tumors where it is activated by proteases. Experiments in mice with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-selective probe distribution is a determinant of increased fluorescence in cancer. These co-clinical studies suggest that the tumor specificity of protease-activated imaging probes, such as LUM015, is dependent on both biodistribution and enzyme activity. Our first-in-human data support future clinical trials of LUM015 and other protease-sensitive probes.


Subject(s)
Diagnostic Imaging/methods , Fluorescent Dyes/metabolism , Neoplasms/diagnosis , Peptide Hydrolases/metabolism , Animals , Breast Neoplasms/diagnosis , Disease Models, Animal , Female , Fluorescent Dyes/pharmacokinetics , Humans , Injections, Intravenous , Metabolome , Mice , Sarcoma/diagnosis , Tissue Distribution
3.
Int J Cancer ; 133(12): 2925-33, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23775727

ABSTRACT

Many targets have been identified in solid tumors for antibody therapy but it is less clear what surface antigens may be most commonly expressed on disseminated tumor cells. Using malignant pleural effusions as a source of disseminated tumor cells, we compared a panel of 35 antigens for their cancer specificity, antigen abundance and functional significance. These antigens have been previously implicated in cancer metastasis and fall into four categories: (i) cancer stem cell, (ii) epithelial-mesenchymal transition, (iii) metastatic signature of in vivo selection and (iv) tyrosine kinase receptors. We determined the antigen density of all 35 antigens on the cell surface by flow cytometry, which ranges from 3 × 10(3) -7 × 10(6) copies per cell. Comparison between the malignant and benign pleural effusions enabled us to determine the antigens specific for cancer. We further chose six antigens and examined the correlation between their expression levels and tumor formation in immunocompromised mice. We concluded that CD24 is one of the few antigens that could simultaneously meet all three criteria of an ideal target. It was specifically and abundantly expressed in malignant pleural effusions; CD24(high) tumor cells formed tumors in mice at a faster rate than CD24(low) tumor cells, and shRNA-mediated knockdown of CD24 in HT29 cells confirmed a functional requirement for CD24 in the colonization of the lung. Concomitant consideration of antigen abundance, specificity and functional importance can help identify potentially useful markers for disseminated tumor cells.


Subject(s)
Antigens, Surface/analysis , Biomarkers, Tumor/analysis , CD24 Antigen/analysis , Pleural Effusion, Malignant/immunology , Animals , Antigens, Neoplasm/analysis , CD24 Antigen/physiology , Cell Adhesion Molecules/analysis , Epithelial Cell Adhesion Molecule , HT29 Cells , Heterografts , Humans , Lung Neoplasms/secondary , Mice , Neoplasm Transplantation , Pleural Effusion, Malignant/pathology
4.
Int J Radiat Oncol Biol Phys ; 86(1): 136-42, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23391816

ABSTRACT

PURPOSE: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. METHODS AND MATERIALS: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. RESULTS: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. CONCLUSIONS: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.


Subject(s)
Cathepsins/metabolism , Fluorescent Dyes/metabolism , Muscle, Skeletal/metabolism , Sarcoma, Experimental/metabolism , Sarcoma, Experimental/radiotherapy , Animals , Blotting, Western , Diagnosis, Differential , Flow Cytometry , Hindlimb , Mice , Microscopy, Confocal , Sarcoma, Experimental/diagnosis , Tissue Distribution , Whole-Body Irradiation/methods
5.
Cancer ; 118(21): 5320-30, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22437667

ABSTRACT

BACKGROUND: The goal of limb-sparing surgery for a soft tissue sarcoma of the extremity is to remove all malignant cells while preserving limb function. After initial surgery, microscopic residual disease in the tumor bed will cause a local recurrence in approximately 33% of patients with sarcoma. To help identify these patients, the authors developed an in vivo imaging system to investigate the suitability of molecular imaging for intraoperative visualization. METHODS: A primary mouse model of soft tissue sarcoma and a wide field-of-view imaging device were used to investigate a series of exogenously administered, near-infrared (NIR) fluorescent probes activated by cathepsin proteases for real-time intraoperative imaging. RESULTS: The authors demonstrated that exogenously administered cathepsin-activated probes can be used for image-guided surgery to identify microscopic residual NIR fluorescence in the tumor beds of mice. The presence of residual NIR fluorescence was correlated with microscopic residual sarcoma and local recurrence. The removal of residual NIR fluorescence improved local control. CONCLUSIONS: The authors concluded that their technique has the potential to be used for intraoperative image-guided surgery to identify microscopic residual disease in patients with cancer.


Subject(s)
Neoplasm, Residual/surgery , Sarcoma/surgery , Soft Tissue Neoplasms/surgery , Animals , Fluorescent Dyes , Infrared Rays , Intraoperative Period , Mice , Sarcoma, Experimental/surgery , Surgery, Computer-Assisted
6.
J Orthop Res ; 29(7): 1075-80, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21344497

ABSTRACT

Whole body vibration (WBV), consisting of a low-magnitude, high-frequency (LMHF) signal, is anabolic to bone in vivo and may act through alteration of the lineage commitment of mesenchymal stromal cells (MSC). We investigated the effect of LMHF vibration on rat bone marrow-derived MSCs (rMSCs) in an in vitro system. We subjected rMSCs to repeated (six) bouts of 1-h vibration at 0.3g and 60 Hz in the presence of osteogenic (OS) induction medium. The OS differentiation of rMSCs under the loaded and non-loaded conditions was assessed by examining cell proliferation, alkaline phosphatase (ALP) activity, mRNA expression of various osteoblast-associated markers [ALP, Runx2, osterix (Osx), collagen type I alpha 1 (COL1A1), bone sialoprotein (BSP), osteopontin (OPN), and osteocalcin (OCN)], and matrix mineralization. LMHF vibration did not enhance the OS differentiation of rMSCs. Surprisingly, the mRNA level of Osx, a transcription factor necessary for osteoblast formation, was decreased, and matrix mineralization was inhibited. Our findings suggest that LMHF vibration may exert its anabolic effects in vivo via mechanosensing of a cell type different from MSCs.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Osteocytes/cytology , Stromal Cells/cytology , Vibration , Alkaline Phosphatase/genetics , Animals , Bone Marrow Cells/physiology , Calcification, Physiologic/physiology , Cell Differentiation/physiology , Cell Division/physiology , Cells, Cultured , In Vitro Techniques , Male , Mesenchymal Stem Cells/physiology , Osteocytes/physiology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Stromal Cells/physiology , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL