ABSTRACT
BACKGROUND: The worldwide emergence of multi-drug resistant bacteria has become a health crisis, as fewer or sometimes no antimicrobial agents are effective against these bacteria. The Rio Grande River is the natural boundary between the United States (US) and Mexico. It spans a border region between Texas, New Mexico and Mexico. Underserved populations on the Mexican side use the river for recreational purposes, while on the US side, the river is used for irrigation and as a source of drinking water. OBJECTIVES: The purpose of the present study was to evaluate the concentration of antibiotic residues, to determine the presence of genetic elements conferring antibiotic resistance and to characterize multi-drug resistant bacteria in the waters of the Rio Grande River. METHODS: Water samples were obtained from the Rio Grande River. Deoxyribonucleic acid (DNA) was extracted from both isolated bacteria and directly from the water. Amplification of selected genetic elements was accomplished by polymerase chain reaction. Identification and isolation of bacteria was performed through MicroScan autoSCAN-4. Fecal contamination was assessed by IDEXX Colilert. Antibiotic residues were determined by liquid chromatography and mass spectrometry. RESULTS: Antibiotics were found in 92% of both water and sediment samples. Antibiotic concentrations ranged from 0.38 ng/L - 742.73 ng/L and 0.39 ng/l - 66.3 ng/g dry weight in water and sediment samples, respectively. Genetic elements conferring resistance were recovered from all collection sites. Of the isolated bacteria, 91 (64.08%) were resistant to at least two synergistic antibiotic combinations and 11 (14.79%) were found to be resistant to 20 or more individual antibiotics. Fecal contamination was higher during the months of April and July. CONCLUSIONS: The 26 km segment of the Rio Grande River from Sunland Park NM to El Paso, TX and Juarez, Mexico is an area of concern due to poor water quality. The presence of multidrug resistant bacteria, antibiotics and mobile genetic elements may be a health hazard for the surrounding populations of this binational border region. Policies need to be developed for the appropriate management of the environmental natural resources in this border region. COMPETING INTERESTS: The authors declare no competing financial interests.
ABSTRACT
Particulate matter less than 10 microm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.
Subject(s)
Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects , Bronchi/cytology , Bronchi/drug effects , Cell Line , Cytochrome P-450 CYP1A1/drug effects , Cytochrome P-450 CYP1A1/metabolism , Cytokines/drug effects , Cytokines/metabolism , Environmental Monitoring/methods , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Lung/cytology , Lung/drug effects , Mexico , Oxidative Stress/drug effects , Particle Size , Seasons , TexasABSTRACT
Ultrasonic extraction followed by Stir Bar Sorptive Extraction (SBSE) and thermal desorption inline coupled with Gas Chromatography and Mass Spectrometry (TD/GC/MS) was used to perform a comprehensive determination of soil-borne polycyclic aromatic hydrocarbons (PAHs) in El Paso, Texas. The method provided good sensitivity and faster processing time for the analysis. The total PAHs in El Paso soil ranged from 0.1 to 2225.5 microg kg(-1). Although the majority of PAH concentrations did not exceed the soil screening levels regulated by the United States Environmental Protection Agency, the existence of PAHs in this ecosystem is ubiquitous. Naphthalene were found in 100% of the soil samples; while the heavy PAHs (five- and six-ring) were not often detected and mostly remained in closer proximity to industrial areas and major traffic points. The results ruled out the possibility of petroleum refining as the significant source of local soil-borne PAH contamination, but they suggested that the PAHs found in El Paso soil were closely linked to human activities and possible other industrial processes.