Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 16(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674852

ABSTRACT

Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.


Subject(s)
Asthma , Mice, Inbred BALB C , Probiotics , Animals , Asthma/chemically induced , Probiotics/pharmacology , Female , Mice , Ovalbumin , Ligilactobacillus salivarius , Diethylhexyl Phthalate/toxicity , Disease Models, Animal , Pregnancy , Lung/pathology , Lung/drug effects , Dietary Supplements , Immunoglobulin E/blood , Bronchoalveolar Lavage Fluid
2.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36552604

ABSTRACT

Oxidative stress and gut dysbiosis have been known to precede Parkinson's disease (PD). An antioxidant-rich product, mangosteen pericarp (MP), has the ability to counterbalance excessive free radicals and the imbalanced gut microbiota composition, suggesting the MP's capacity to delay PD progression. In this study, we explored the effects of two doses of MP extract in a unilateral 6-hydroxydopamine (6-OHDA)-induced PD rat model. We revealed that the 8-week supplementation of a low dose (LMP) and a high dose of the MP extract (HMP) improved motor function, as observed in decreased contralateral rotation, improved time spent on rod, and higher dopamine binding transporter (DAT) in the substantia nigra pars compacta (SNc). The MP extract, especially the HMP, also increased antioxidant-related gene expressions, restored muscle mitochondrial function, and remodeled fecal microbiota composition, which were followed by reduced reactive oxygen species levels in brain and inflammation in plasma. Importantly, bacterial genera Sutterella, Rothia, and Aggregatibacter, which were negatively correlated with antioxidant gene expressions, decreased in the HMP group. It is imperative to note that in addition to directly acting as an antioxidant to reduce excessive free radicals, MP extract might also increase antioxidant state by rebuilding gut microbiota, thereby enhanced anti-inflammatory capacity and restored mitochondrial function to attenuate motor deficit in 6-OHDA-induced PD-like condition. All in all, MP extract is a potential candidate for auxiliary therapy for PD.

3.
Antioxidants (Basel) ; 10(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34829694

ABSTRACT

Oxidative stress plays a key role in the degeneration of dopaminergic neurons in Parkinson's disease (PD), which may be aggravated by concomitant PD-associated gut dysbiosis. Probiotics and prebiotics are therapeutically relevant to these conditions due to their antioxidant, anti-inflammatory, and gut microbiome modulation properties. However, the mechanisms by which probiotic/prebiotic supplementation affects antioxidant capacity and the gut microbiome in PD remains poorly characterized. In this study, we assessed the effects of a Lactobacillus salivarius AP-32 probiotic, a prebiotic (dried AP-32 culture medium supernatant), and a probiotic/prebiotic cocktail in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced PD. The neuroprotective effects and levels of oxidative stress were evaluated after eight weeks of daily supplementation. Fecal microbiota composition was analyzed by fecal 16S rRNA gene sequencing. The supplements were associated with direct increases in host antioxidant enzyme activities and short-chain fatty acid production, protected dopaminergic neurons, and improved motor functions. The supplements also altered the fecal microbiota composition, and some specifically enriched commensal taxa correlated positively with superoxide dismutase, glutathione peroxidase, and catalase activity, indicating supplementation also promotes antioxidant activity via an indirect pathway. Therefore, L. salivarius AP-32 supplementation enhanced the activity of host antioxidant enzymes via direct and indirect modes of action in rats with 6-OHDA-induced PD.

4.
Hum Exp Toxicol ; 40(4): 622-633, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32924602

ABSTRACT

Bacteroides fragilis (BF) plays a critical role in developing and maintaining the mammalian immune system. We previously found that BF colonization could prevent inflammation and tumor formation in a germ-free (GF) colitis-associated colorectal cancer (CAC) mouse model. The role of Toll-like receptor 4 (TLR4) in CAC development has not been clearly elucidated in BF mono-colonized gnotobiotic mice. The wild-type (WT) and TLR4 knockout (T4K) germ-free mice were raised with or without BF colonization for 28 days (GF/WT, GF/T4K, BF/WT, and BF/T4K) and then CAC was induced under azoxymethane (AOM)/dextran sulfate sodium (DSS) administration. The results showed that tumor formation and tumor incidence were significantly inhibited in the BF/WT group compared to those observed in the GF/WT group. However, the tumor prevention effect was not observed in the BF/T4K group unlike in the BF/WT group. Moreover, the CAC histological severity of the BF/WT group was ameliorated, but more severe lesions were found in the GF/WT, GF/T4K, and BF/T4K groups. Immunohistochemistry showed decreased cell proliferation (PCNA, ß-catenin) and inflammatory markers (iNOS) in the BF/WT group compared to those in the BF/T4K group. Taken together, BF mono-colonization of GF mice might prevent CAC via the TLR4 signal pathway.


Subject(s)
Bacteroides fragilis , Colitis-Associated Neoplasms , Colitis , Colorectal Neoplasms , Toll-Like Receptor 4/genetics , Animals , Azoxymethane , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Colitis/pathology , Colitis-Associated Neoplasms/metabolism , Colitis-Associated Neoplasms/microbiology , Colitis-Associated Neoplasms/pathology , Colon/metabolism , Colon/microbiology , Colon/pathology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Cyclooxygenase 2/metabolism , Dextran Sulfate , Disease Models, Animal , Germ-Free Life , Male , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Proliferating Cell Nuclear Antigen/metabolism , beta Catenin/metabolism
5.
J Nutr Biochem ; 79: 108362, 2020 05.
Article in English | MEDLINE | ID: mdl-32163832

ABSTRACT

Diet-induced obesity is the most widely used animal model for studying nonalcoholic fatty liver disease (NAFLD). However, the physiological effects of a high-fat diet (HFD) are inconsistent between different studies. To elucidate this mystery, mice raised with conventional (CONV), specific pathogen-free (SPF) and gentamicin (G) treatments and fed with standard diet (STD) or HFD were analyzed in terms of their physiology, gut microbiota composition, hepatic steatosis and inflammation. Serum biochemistry showed increased levels of cholesterol and aspartate aminotransferase in the G-STD and CONV-HFD groups, respectively. The CONV-HFD group exhibited more inflammatory foci compared to the SPF-HFD and G-HFD groups. Furthermore, immunohistochemistry staining revealed the infiltration of Kupffer cells in the liver, consistent with increased mRNA levels of MCP-1, CD36 and TLR4. Principal coordinate analysis and the cladogram of LEfSe showed that the distinguished clusters of gut microbiota were dependent on housing conditions. The Rikenellaceae, F16 and Desulfovibrionaceae were strongly correlated with hepatic inflammation. Otherwise, higher NAFLD activity score correlated with altered relative abundances of Bacteroidetes and Firmicutes. In conclusion, gut microbiota varying with housing condition may be pivotal for the host response to HFD.


Subject(s)
Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Housing, Animal , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Aspartate Aminotransferases/blood , Bacteroidetes , Cholesterol/blood , Disease Models, Animal , Firmicutes , Inflammation/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology , Obesity/metabolism , Obesity/pathology , Specific Pathogen-Free Organisms
6.
Nutr Res ; 69: 20-29, 2019 09.
Article in English | MEDLINE | ID: mdl-31470288

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a serious liver disorder and characterized by the hepatic accumulation of excess fatty acids. Clinical studies and animal models have shown a shift of gut microbiota from bacteroidetes to firmicutes in NAFLD patients and a diet-induced NAFLD mouse model. Therefore, we hypothesized that these 2 groups of bacteria may have differential effects on lipid metabolism in the liver, which further contributed to pathogenesis of NAFLD. To elucidate these effects, we inoculated two species of Bacteroidetes (B-group) or five species of Firmicutes (F-group) which were isolated from healthy individuals into germ-free mice. We found that the F-group induced elevated body weight, liver weight, and hepatic steatosis compared to the B-group under high-fat diet (HFD) conditions. The mRNA expression level of cluster of differentiation 36 (CD36) was elevated in the F-group compared to that in the B-group. Increased mRNA expression levels of fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1), and diacylglycerol O-acyltransferase 2 (DGAT2) were also seen under HFD conditions in the F-group compared to that in the B-group. In addition, the expression level of miR802-5p was only elevated in the F-group under HFD conditions. Taken together, our results suggested that these specific species of Firmicutes may induce more hepatic steatosis by modulating fatty acid influx and lipogenesis compared to those of Bacteroidetes. These results may provide more understanding of the effects of gut microbiota on NAFLD.


Subject(s)
Bacteroidetes , Firmicutes , Gastrointestinal Microbiome/physiology , Germ-Free Life , Lipid Metabolism/physiology , Non-alcoholic Fatty Liver Disease/microbiology , Animals , Diet, High-Fat , Disease Models, Animal , Liver/metabolism , Liver/microbiology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Severity of Illness Index
7.
Immunopharmacol Immunotoxicol ; 41(2): 207-213, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30706742

ABSTRACT

Objective: Inflammatory bowel disease (IBD) is generally considered as a major risk factor in the progression of colitis-associated colorectal cancer (CAC). Previous studies have indicated that the composition of gut microflora may be involved in CAC induction and progress. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to colonic symbiotic bacteria of the host. This study was aimed to investigate the protective role of BF in a colorectal cancer (CRC) model induced by azoxymethane (AOM) and dextran sulfate sodium (DSS) in germ-free (GF) mice. Materials and methods: Total 22 GF mice were divided into two groups: GF and BF group. Half of the GF mice were colonized with BF for 28 days before CRC induction by AOM/DSS. Results: BF colonization increased animal survival (100%). Cecum weight and cecum/body weight ratio significantly decreased in BF/AOM/DSS group. Interestingly, there was a significant decrease in tumor number and tumor incidence in the BF/AOM/DSS group as compared to the GF/AOM/DSS group. The adenocarcinoma/adenoma incidence and histologic score were also decreased in the BF/AOM/DSS group. In addition, immunohistochemistry staining found decreased numbers of cell proliferation (PCNA) and inflammatory cell (granulocytes) infiltration in the colon mucosa of the BF group. The ß-catenin staining in the BF/AOM/DSS group had fewer and weaker positive signal expressions. Taking together, the BF colonization significantly ameliorated AOM/DSS-induced CRC by suppressing the activity of cell proliferation-related molecules and reducing the number of inflammatory cells. Conclusions: Symbiotic BF may play a pivotal role in maintaining the gastrointestinal immunophysiologic balance and regulating anti-tumorigenesis responses.


Subject(s)
Azoxymethane/toxicity , Bacteroides fragilis/immunology , Colitis , Colorectal Neoplasms , Dextran Sulfate/toxicity , Germ-Free Life , Animals , Colitis/chemically induced , Colitis/immunology , Colitis/pathology , Colitis/prevention & control , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Male , Mice
8.
Nutrients ; 10(11)2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30424538

ABSTRACT

Beef extract (BE) is a nutritional supplement obtained by cooking beef meat. Compared with traditional chicken essence or clam extract, BE is cheaper to produce and may be used for wound healing, as a chemotherapy supplement, or to prevent fatigue. In this study, we evaluated the potential beneficial effects of BE on exercise performance and the related role of the gut microbiota. Pathogen-free male BALB/c mice were divided into three groups to receive vehicle or BE (0, 12.3, or 24.6 mL/kg) by oral gavage for 28 days. Exercise performance was evaluated using forelimb grip strength, swimming time to exhaustion, and physiological levels of fatigue-related biomarkers (serum lactate, blood urea nitrogen, and glucose levels) after physical challenges. BE supplementation elevated endurance and grip strength in a dose-dependent manner; significantly decreased lactate and blood urea nitrogen levels after physical challenge; and significantly increased muscle glycogen content. The germ-free mice supplemented with BE or an equal-calorie portion of albumin did not show significant differences from the other groups in exercise performance and levels of related biomarkers. Therefore, BE supplementation improved endurance and reduced fatigue, which might be related to BE composition, but had no correlation with the gut microbiota.


Subject(s)
Dietary Supplements , Fatigue/prevention & control , Gastrointestinal Microbiome , Muscle Strength , Physical Conditioning, Animal/physiology , Physical Endurance , Red Meat , Animals , Blood Urea Nitrogen , Cattle , Cooking , Fatigue/metabolism , Glycogen/metabolism , Hand Strength , Lactic Acid/blood , Male , Mice, Inbred BALB C , Muscle, Skeletal , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL