Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med Rep ; 20(3): 2339-2346, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322179

ABSTRACT

Reactive oxygen species (ROS) are important cellular second messengers involved in various aspects of cell signaling. ROS are elevated in multiple types of cancer cells, and this elevation is known to be involved in pathological processes of cancer. Although high levels of ROS exert cytotoxic effects on cancer cells, low levels of ROS stimulate cell proliferation and survival by inducing several pro­survival signaling pathways. In addition, ROS have been shown to induce epithelial­mesenchymal transition (EMT), which is essential for the initiation of metastasis. However, the precise mechanism of ROS­induced EMT remains to be elucidated. In the present study, it was indicated that ROS induce EMT by activating Snail expression, which then represses E­cadherin expression in MCF­7 cells. It was further indicated that distal­less homeobox­2 (Dlx­2), one of the human Dlx gene family proteins involved in embryonic development, acts as an upstream regulator of ROS­induced Snail expression. It was also revealed that ROS treatment induces the glycolytic switch, a phenomenon whereby cancer cells primarily rely on glycolysis instead of mitochondrial oxidative phosphorylation for ATP production, even in the presence of oxygen. In addition, ROS inhibited oxidative phosphorylation and caused cytochrome c oxidase inhibition via the Dlx­2/Snail cascade. These results suggest that ROS induce EMT, the glycolytic switch and mitochondrial repression by activating the Dlx­2/Snail axis, thereby playing crucial roles in MCF­7 cancer cell progression.


Subject(s)
Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Homeodomain Proteins/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Snail Family Transcription Factors/metabolism , Transcription Factors/metabolism , Female , Glycolysis , Humans , MCF-7 Cells , Signal Transduction
2.
Oxid Med Cell Longev ; 2018: 3537471, 2018.
Article in English | MEDLINE | ID: mdl-29636841

ABSTRACT

Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.


Subject(s)
Autophagy/physiology , Cell Death/physiology , Necrosis/metabolism , Neoplasms/pathology , Apoptosis , Disease Progression , Humans
3.
Oxid Med Cell Longev ; 2018: 1027453, 2018.
Article in English | MEDLINE | ID: mdl-30671168

ABSTRACT

Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-ß, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Humans , Neoplasm Metastasis , Neoplasms/pathology , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL