Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nat Cancer ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698089

ABSTRACT

Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.

2.
Exp Neurobiol ; 32(4): 259-270, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37749927

ABSTRACT

Circadian rhythm is a 24-hour cycle of behavioral and physiological changes. Disrupted sleep-wake patterns and circadian dysfunction are common in patients of Alzheimer Disease (AD) and are closely related with neuroinflammation. However, it is not well known how circadian rhythm of immune cells is altered during the progress of AD. Previously, we found presenilin 2 (Psen2) N141I mutation, one of familial AD (FAD) risk genes, induces hyperimmunity through the epigenetic repression of REV-ERBα expression in microglia and bone marrow-derived macrophage (BMDM) cells. Here, we investigated whether repression of REV-ERBα is associated with dysfunction of immune cell-endogenous or central circadian rhythm by analyses of clock genes expression and cytokine secretion, bioluminescence recording of rhythmic PER2::LUC expression, and monitoring of animal behavioral rhythm. Psen2 N141I mutation down-regulated REV-ERBα and induced selective over-production of IL-6 (a well-known clock-dependent cytokine) following the treatment of toll-like receptor (TLR) ligands in microglia, astrocytes, and BMDM. Psen2 N141I mutation also lowered amplitude of intrinsic daily oscillation in these immune cells representatives of brain and periphery. Of interest, however, the period of daily rhythm remained intact in immune cells. Furthermore, analyses of the central clock and animal behavioral rhythms revealed that central clock remained normal without down-regulation of REV-ERBα. These results suggest that Psen2 N141I mutation induces hyperimmunity mainly through the suppression of REV-ERBα in immune cells, which have lowered amplitude but normal period of rhythmic oscillation. Furthermore, our data reveal that central circadian clock is not affected by Psen2 N141I mutation.

3.
Cell Rep ; 42(6): 112562, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37245210

ABSTRACT

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Subject(s)
Breast Neoplasms , Formates , Oxidoreductases Acting on CH-NH Group Donors , Female , Humans , Breast Neoplasms/metabolism , Formates/metabolism , Methionine , NADP , Reactive Oxygen Species , Oxidoreductases Acting on CH-NH Group Donors/metabolism
4.
Nanotechnology ; 34(20)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36745914

ABSTRACT

HfO2-based ferroelectric thin films have attracted significant interest for semiconductor device applications due to their compatibility with complementary metal oxide semiconductor (CMOS) technology. One of the benefits of HfO2-based ferroelectric thin films is their ability to be scaled to thicknesses as low as 10 nm while retaining their ferroelectric properties; a feat that has been difficult to accomplish with conventional perovskite-based ferroelectrics using CMOS-compatible processes. However, reducing the thickness limit of HfO2-based ferroelectric thin films below the sub 5 nm thickness regime while preserving their ferroelectric property remains a formidable challenge. This is because both the structural factors of HfO2, including polymorphism and orientation, and the electrical factors of HfO2-based devices, such as the depolarization field, are known to be highly dependent on the HfO2thickness. Accordingly, when the thickness of HfO2drops below 5 nm, these factors will become even more crucial. In this regard, the size effect of HfO2-based ferroelectric thin films is thoroughly discussed in the present review. The impact of thickness on the ferroelectric property of HfO2-based thin films and the electrical performance of HfO2-based ferroelectric semiconductor devices, such as ferroelectric random-access-memory, ferroelectric field-effect-transistor, and ferroelectric tunnel junction, is extensively discussed from the perspective of fundamental theory and experimental results. Finally, recent developments and reports on achieving ferroelectric HfO2at sub-5 nm thickness regime and their applications are discussed.

5.
Nanotechnology ; 34(12)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36538824

ABSTRACT

Hf0.5Zr0.5O2(HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al2O3interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al2O3that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al2O3at the top interface demonstrate a higher remanent polarization (2Pr∼ 42µC cm-2) and endurance limit beyond 108cycles at a cycling field amplitude of 3.5 MV cm-1. We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al2O3layer. We demonstrate that the use of Al2O3as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices.

6.
Ecotoxicol Environ Saf ; 241: 113843, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36068765

ABSTRACT

Microplastics (MPs), due to their impacts on the ecosystem and their integration into the food web either through trophic transfer or ingestion directly from the ambient environment, are an emerging class of environmental contaminants posing a great threat to marine organisms. Most reports on the toxic effects of MPs exclusively focus on bioaccumulation, oxidative stress, pathological damage, and metabolic disturbance in fish. However, the collected information on fish immunity in response to MPs is poorly defined. In particular, little is known regarding mucosal immunity and the role of mucins. In this study, marine medaka (Oryzias melastigma) larvae were exposed to 6.0 µm beads of polystyrene microplastics (PS-MPs) at three environmentally relevant concentrations (102 particles/L, 104 particles/L, and 106 particles/L) for 14 days. The experiment was carried out to explore the developmental and behavioural indices, the transcriptional profiles of mucins, pro-inflammatory, immune, metabolism and antioxidant responses related genes, as well as the accumulation of PS-MPs in larvae. The results revealed that PS-MPs were observed in the gastrointestinal tract, with a concentration- and exposure time-dependent manner. No significant difference in the larval mortality was found between the treatment groups and the control, whereas the body length of larvae demonstrated a significant reduction at 106 particles/L on 14 days post-hatching. The swimming behaviour of the larvae became hyperactive under exposure to 104 and 106 particles/L PS-MPs. In addition, PS-MP exposure significantly up-regulated the mucin gene transcriptional levels of muc7-like and muc13-like, however down-regulated the mucin gene expression levels of heg1, muc2, muc5AC-like and muc13. The immune- and inflammation and metabolism-relevant genes (jak, stat-3, il-6, il-1ß, tnf-а, ccl-11, nf-κb, and sod) were significantly induced by PS-MPs at 104 and 106 particles/L compared to the control. Taken together, this study suggests that PS-MPs induced inflammation response and might obstruct the immune functions and retarded the growth of the marine medaka larvae even at environmentally relevant concentrations.


Subject(s)
Oryzias , Water Pollutants, Chemical , Animals , Ecosystem , Immunity , Inflammation , Larva , Microplastics/toxicity , Mucins/genetics , Mucins/metabolism , Oryzias/metabolism , Plastics/toxicity , Polystyrenes/metabolism , Polystyrenes/toxicity , Swimming , Water Pollutants, Chemical/analysis
7.
ACS Appl Mater Interfaces ; 14(37): 42232-42244, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069477

ABSTRACT

Hafnia-zirconia (HfO2-ZrO2) solid solution thin films have emerged as viable candidates for electronic applications due to their compatibility with Si technology and demonstrated ferroelectricity at the nanoscale. The oxygen source in atomic layer deposition (ALD) plays a crucial role in determining the impurity concentration and phase composition of HfO2-ZrO2 within metal-ferroelectric-metal devices, notably at the Hf0.5Zr0.5O2 /TiN interface. The interface characteristics of HZO/TiN are fabricated via sequential no-atmosphere processing (SNAP) with either H2O or O2-plasma to study the influence of oxygen source on buried interfaces. Time-of-flight secondary ion mass spectrometry reveals that HZO films grown via O2-plasma promote the development of an interfacial TiOx layer at the bottom HZO/TiN interface. The presence of the TiOx layer leads to the development of 111-fiber texture in HZO as confirmed by two-dimensional X-ray diffraction (2D-XRD). Structural and chemical differences between HZO films grown via H2O or O2-plasma were found to strongly affect electrical characteristics such as permittivity, leakage current density, endurance, and switching kinetics. While HZO films grown via H2O yielded a higher remanent polarization value of 25 µC/cm2, HZO films grown via O2-plasma exhibited a comparable Pr of 21 µC/cm2 polarization and enhanced field cycling endurance limit by almost 2 orders of magnitude. Our study illustrates how oxygen sources (O2-plasma or H2O) in ALD can be a viable way to engineer the interface and properties in HZO thin films.

8.
J Cell Sci ; 135(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35775474

ABSTRACT

Accelerated aerobic glycolysis is a distinctive metabolic property of cancer cells that confers dependency on glucose for survival. However, the therapeutic strategies targeting this vulnerability are still inefficient and have unacceptable side effects in clinical trials. Therefore, developing biomarkers to predict therapeutic efficacy would be essential to improve the selective targeting of cancer cells. Here, we found that cell lines that are sensitive to glucose deprivation have high expression of cystine/glutamate antiporter xCT (also known as SLC7A11). We found that cystine uptake and glutamate export through xCT contributed to rapid NADPH depletion under glucose deprivation. This collapse of the redox system oxidized and inactivated AMP-activated protein kinase (AMPK), a major regulator of metabolic adaptation, resulting in a metabolic catastrophe and cell death. Although this phenomenon was prevented by pharmacological or genetic inhibition of xCT, overexpression of xCT sensitized resistant cancer cells to glucose deprivation. Taken together, these findings suggest a novel crosstalk between AMPK and xCT that links metabolism and signal transduction, and reveal a metabolic vulnerability to glucose deprivation in cancer cells expressing high levels of xCT.


Subject(s)
Cystine , Neoplasms , AMP-Activated Protein Kinases/metabolism , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Cell Line, Tumor , Cystine/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Neoplasms/genetics , Oxidation-Reduction
9.
Nat Commun ; 13(1): 1972, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418126

ABSTRACT

Hyperimmunity drives the development of Alzheimer disease (AD). The immune system is under the circadian control, and circadian abnormalities aggravate AD progress. Here, we investigate how an AD-linked mutation deregulates expression of circadian genes and induces cognitive decline using the knock-in (KI) mice heterozygous for presenilin 2 N141I mutation. This mutation causes selective overproduction of clock gene-controlled cytokines through the DNA hypermethylation-mediated repression of REV-ERBα in innate immune cells. The KI/+ mice are vulnerable to otherwise innocuous, mild immune challenges. The antipsychotic chlorpromazine restores the REV-ERBα level by normalizing DNA methylation through the inhibition of PI3K/AKT1 pathway, and prevents the overexcitation of innate immune cells and cognitive decline in KI/+ mice. These results highlight a pathogenic link between this AD mutation and immune cell overactivation through the epigenetic suppression of REV-ERBα.


Subject(s)
Epigenetic Repression , Nuclear Receptor Subfamily 1, Group D, Member 1 , Presenilin-2/genetics , Animals , Circadian Rhythm/physiology , Immunity , Mice , Mutation , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
10.
Small ; 18(2): e2104944, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34802184

ABSTRACT

The charging process of secondary batteries is always associated with a large volume expansion of the alloying anodes, which in many cases, develops high compressive residual stresses near the propagating interface. This phenomenon causes a significant reduction in the rate performance of the anodes and is detrimental to the development of fast-charging batteries. However, for the Na-Sn battery system, the residual stresses that develop near the interface are not stored, but are relieved by the generation of high-density dislocations in crystalline Sn. Direct-contact diffusion experiments show that these dislocations facilitate the preferential transport of Na and accelerate the Na diffusion into crystalline Sn at ultrafast rates via "dislocation-pipe diffusion". Advanced analyses are performed to observe the evolution of atomic-scale structures while measuring the distribution and magnitude of residual stresses near the interface. In addition, multi-scale simulations that combined classical molecular dynamics and first-principles calculations are performed to explain the structural origins of the ultrafast diffusion rates observed in the Na-Sn system. These findings not only address the knowledge gaps regarding the relationship between pipe diffusion and the diffusivity of carrier ions but also provide guidelines for the appropriate selection of anode materials for use in fast-charging batteries.

11.
Nanotechnology ; 32(48)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34407525

ABSTRACT

Ferroelectric random-access memory (FRAM) based on conventional ferroelectric materials is a non-volatile memory with fast read/write operations, high endurance, and 10 years of data retention time. However, it suffers from destructive read-out operation and lack of CMOS compatibility. HfO2-based ferroelectric tunnel junctions (FTJ) may compensate for the shortcomings of FRAM by its CMOS compatibility, fast operation speed, and non-destructive readout operation. In this study, we investigate the effect of ferroelectric and interface film thickness on the tunneling electroresistance or ON/OFF current ratio of the Hf0.5Zr0.5O2/Al2O3based FTJ device. Integrating a thick ferroelectric layer (i.e. 12 nm Hf0.5Zr0.5O2) with a thin interface layer (i.e. 1 nm Al2O3) resulted in an ON/OFF current ratio of 78. Furthermore, to elucidate the relationship between ON/OFF current ratio and interfacial properties, the Hf0.5Zr0.5O2-Al2O3films and Ge-Al2O3interfaces are examined via time-of-flight secondary ion mass spectrometry depth profiling mode. A bilayer oxide heterostructure (Hf0.5Zr0.5O2/Al2O3) is deposited by atomic layer deposition (ALD) on the Ge substrate. The ON/OFF current ratio is enhanced by an order of magnitude when the Hf0.5Zr0.5O2film deposition mode is changed from exposure (H2O) ALD to sequential plasma (sequential O2-H2) ALD. Moreover, the interfacial engineering approach based on thein situALD H2-plasma surface pre-treatment of Ge increases the ON/OFF current ratio from 9 to 38 by reducing the interfacial trap density state at the Ge-Al2O3interface and producing Al2O3with fewer oxygen vacancies as compared to the wet etch (HF + H2O rinse) treatment of the Ge substrate. This study provides evidence of strong coupling between Hf0.5Zr0.5O2and Al2O3films in controlling the ON/OFF current ratio of the FTJ.

12.
Clin Exp Emerg Med ; 8(1): 65-70, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33845525

ABSTRACT

OBJECTIVE: Intractable massive oronasal bleeding can become a life-threatening condition. The success rate of conventional bleeding control methods other than transarterial embolization (TAE) is not expected to be high. We investigated the efficacy of Sengstaken-Blakemore tube (SBT) balloon tamponade in patients with sustained and intractable oronasal bleeding secondary to facial injury. METHODS: This study is a retrospective chart review from traumatic patients with sustained and intractable oronasal bleeding who were admitted to the emergency center of Ajou University Hospital and Soonchunhyang University Bucheon Hospital from January 2014 to December 2016. RESULTS: Twelve patients were included in the study, of whom nine (75%) were male. The median age was 31 years (range, 20-73 years). Bleeding was controlled in 11 of the 12 patients (91.7%) either temporarily or definitively. One patient without hemostasis underwent TAE. TAE was performed in an additional three patients out of the 11 patients with hemostasis who experienced continued nasal bleeding after the removal of SBTs. There were no complications from performing the procedure. CONCLUSION: Using SBTs as a hemostatic tool will aid patients with life-threatening intractable oronasal bleeding. Furthermore, this method may be used in patients with continual and intractable oronasal bleeding after facial trauma as a bridging procedure from the emergency department or the intensive care unit to the interventional radiology.

13.
Eur Radiol ; 31(10): 7594-7604, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33876298

ABSTRACT

OBJECTIVES: According to LI-RADS, a major discriminating feature between hepatocellular carcinoma (HCC) and non-HCC malignancies is the subtype of arterial phase hyperenhancement (APHE). The aim of this study was to investigate whether APHE subtypes are consistent across multi-arterial phase (mHAP) MRI acquisitions while evaluating reader agreement. Secondarily, we investigated factors that may affect reader agreement for APHE subtype. METHODS: In this retrospective study, consecutive patients with liver cirrhosis and focal observations who underwent mHAP were included. Five radiologists reviewed MR images in 2 reading sessions. In reading session 1, individual AP series were reviewed and scored for presence of APHE and subtype. In reading session 2, readers scored observations' major and ancillary features and LI-RADS category in the complete MRI examination. Reader agreement was calculated using Fleiss' kappa for binary outcomes and Kendall's coefficient of concordance for LI-RADS categories. Univariate mixed effects logistic regressions were performed to investigate factors affecting agreement. RESULTS: In total, 61 patients with 77 focal observations were analyzed. Of observations unanimously scored as having APHE, 27.7% showed both rim and nonrim subtypes on mHAP. Inter-reader agreement for APHE subtype ranged from 0.49 (95% CI: 0.33, 0.64) to 0.57 (95% CI: 0.40, 0.74) between reading sessions. Observation size had a trend level effect on rim APHE agreement (p = 0.052). CONCLUSION: Approximately 1/3 of observations demonstrated inconsistent APHE subtype during mHAP acquisition. Small lesions were particularly challenging. Further guidance on APHE subtype classification, especially when applied to mHAP, could be a focus of LI-RADS refinement. KEY POINTS: • In a cohort of patients at risk for HCC, 28% of the observations showed inconsistent arterial phase hyperenhancement (APHE) subtypes (rim and nonrim) on multi-arterial phase imaging according to the majority score of 5 independent readers. • Inconsistent APHE subtypes may challenge reliable imaging diagnosis, i.e., LI-RADS categorization, of focal liver observations in patients at risk for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media , Humans , Liver , Liver Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies , Sensitivity and Specificity
14.
Mol Brain ; 13(1): 88, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513210

ABSTRACT

Microglia are macrophages resident in the central nervous system. C-X3-C motif chemokine receptor 1 (CX3CR1) is a Gαi-coupled seven-transmembrane protein exclusively expressed in the mononuclear phagocyte system including microglia, as well as intestinal and kidney macrophages. Cx3cr1CreERT2 mice express Cre recombinase in a tamoxifen-inducible manner and have been widely used to delete target genes in microglia, since microglia are long-lived cells and outlive peripheral macrophages, which continuously turn over and lose their gene modification over time. ATG7 is an E1-like enzyme that plays an essential role in two ubiquitin-like reactions, ATG12-ATG5 conjugation and LC3-lipidation in autophagy. To study the role of ATG7 in adult microglia, we generated Cx3cr1CreERT2:Atg7fl/fl mice and deleted Atg7 at the age of 8 weeks, and found induction of intestinal adhesion. Since intestinal adhesion is caused by excessive inflammation, these results suggest that deletion of Atg7 in intestinal macrophages even for a short time results in inflammation that cannot be rescued by replenishment with wild-type intestinal macrophages. Our finding suggests that, depending on the roles of the gene, Cx3cr1-Cre-mediated gene deletion may yield unanticipated physiological outcomes outside the central nervous system, and careful necropsy is necessary to assure the microglia-specific roles of the target gene.


Subject(s)
Autophagy-Related Protein 7/metabolism , CX3C Chemokine Receptor 1/metabolism , Gene Deletion , Integrases/metabolism , Intestines/pathology , Tissue Adhesions/genetics , Animals , Mice , Tamoxifen/pharmacology
15.
Cureus ; 12(12): e12019, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33437558

ABSTRACT

Objective The purpose of this study was to investigate whether a change in prehospital arrest rhythms could allow medical personnel to predict survival outcomes in patients who achieved a return of spontaneous circulation (ROSC) in the setting of out-of-hospital cardiac arrest (OHCA). Methods The design of this study was retrospective, multi-regional, observational, and cross-sectional with a determining period between August 2015 and July 2016. Cardiac arrest rhythms were defined as a shockable rhythm (S), which refers to ventricular fibrillation (VF) or pulseless ventricular tachycardia (pVT), and non-shockable rhythm (NS), which refers to pulseless electrical activity or asystole. Survival to admission, survival to discharge, and good cerebral performance category (CPC) (CPC 1 or 2) were defined as good survival outcomes. Results A total of 163 subjects were classified into four groups according to the rhythm change pattern: NS→NS (98), S→S (27), S→NS (23), and NS→S (15). NS→NS pattern was used as the reference in logistic regression analysis. In the case of survival to hospital admission, the odds ratio (OR) (95% CI) of the S→S pattern was the highest [12.63 (3.56-44.85), p: <0.001 by no correction] and [7.29 (1.96-27.10), p = 0.003 with adjusting]. In the case of survival to hospital discharge, the OR (95% CI) of the S→S pattern was the highest [37.14 (11.71-117.78), p: <0.001 by no correction] and [13.85 (3.69-51.97), p: <0.001 with adjusting]. In the case of good CPC (CPC 1 or 2) at discharge, the OR (95% CI) of the S→S pattern was the highest [96 (19.14-481.60), p: <0.001 by no correction] and [149.69 (19.51-1148.48), p: <0.001 with adjusting]. Conclusions The S→S group showed the highest correlation with survival to hospital admission, survival to hospital discharge, and good CPC (CPC 1 or 2) at discharge compared to the NS→NS group. Verifying changes in initial cardiac arrest rhythm and prehospital re-arrest (RA) rhythm patterns after prehospital ROSC can help us predict good survival outcomes in the OHCA setting.

16.
J Nanosci Nanotechnol ; 20(1): 409-414, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31383186

ABSTRACT

Mg and Mg-system alloys are the materials of choice among hydrogen energy storage media due to their high hydrogen storage capacity (7.6 wt.%) and lighter weight (Huot, J., et al., 1999. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. Journal of Alloys and Compounds, 293, pp.495-500). However, the formation of hydrogen products at high temperatures, the phenomenon of rapid alloy deterioration, and the low rate of reaction in the hydriding and dehydriding processes have been the main hindrances to commercialization of these alloys for hydrogen storage. In this study, to increase the reaction rate with hydrogen, Mg-Al-Zn-CaO-Hx hydrogen storage alloys were fabricated HIMA (Seok, S., et al., 2005. Evaluations of microstructure and hydrogenation properties on Mg2NiHx. Transactions of the Korean Hydrogen and New Energy Society, 16(3), pp.238-243). The Alloying times of 72 and 96 h and BCR of 30:1 and 66:1 were used for the HIMA process; the rotation speed was fixed at 200 rpm and the hydrogen pressure was 3 Mpa. SEM was used to confirm the shape of the particles. The crystal structure of the synthesized materials was analyzed by XRD, and BET measurements were performed to determine the correlation between the BCR and specific surface area. The weight change of the composite material was measured by TGA, and the kinetics was evaluated to determine the hydrogen adsorption rate (at 150, 250, and 350 °C).

17.
J Nanosci Nanotechnol ; 20(1): 611-615, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31383221

ABSTRACT

Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/ dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. Various attempts have been made to lower the reaction rate and dehydrogenation temperature by adding transition elements (e.g., Ti, Fe, Co, Ni, Ce), metal oxides, and intermetallic compounds to overcome these shortcomings. On the other hand, carbon materials have been mainly studied in the field of hydrogen storage with high specific surface area and lightweight properties; however, results show that they cannot store a large amount of hydrogen. Recently, it has been theoretically reported that carbon materials act as adsorbents in hydrogen storage. This study focuses on the hydrogenation behavior of MgHx-CaO and MgHx-CaO-MWCNT composites prepared by hydrogen-induced mechanical alloying, and investigates the properties of these composite materials.

18.
BMB Rep ; 53(1): 20-27, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31818362

ABSTRACT

Translocator protein (TSPO), also known as peripheral benzodiazepine receptor, is a transmembrane protein located on the outer mitochondria membrane (OMM) and mainly expressed in glial cells in the brain. Because of the close correlation of its expression level with neuropathology and therapeutic efficacies of several TSPO binding ligands under many neurological conditions, TSPO has been regarded as both biomarker and therapeutic target, and the biological functions of TSPO have been a major research focus. However, recent genetic studies with animal and cellular models revealed unexpected results contrary to the anticipated biological importance of TSPO and cast doubt on the action modes of the TSPO-binding drugs. In this review, we summarize recent controversial findings on the discrepancy between pharmacological and genetic studies of TSPO and suggest some future direction to understand this old and mysterious protein. [BMB Reports 2020; 53(1): 20-27].


Subject(s)
Brain/metabolism , Inflammation/immunology , Mitochondria/metabolism , Neuroglia/metabolism , Receptors, GABA/metabolism , Animals , Brain/immunology , Brain/pathology , Humans , Ligands , Mice , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/metabolism , Nervous System Diseases/therapy , Neuroglia/immunology , Neurons/immunology , Neurons/metabolism , Receptors, GABA/chemistry , Receptors, GABA/genetics
19.
Mol Brain ; 12(1): 29, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30935412

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressant drugs in pregnant women. Infants born following prenatal exposure to SSRIs have a higher risk for behavioral abnormalities, however, the underlying mechanisms remains unknown. Therefore, we examined the effects of prenatal fluoxetine, the most commonly prescribed SSRI, in mice. Intriguingly, chronic in utero fluoxetine treatment impaired working memory and social novelty recognition in adult males. In the medial prefrontal cortex (mPFC), a key region regulating these behaviors, we found augmented spontaneous inhibitory synaptic transmission onto the layer 5 pyramidal neurons. Fast-spiking interneurons in mPFC exhibited enhanced intrinsic excitability and serotonin-induced excitability due to upregulated serotonin (5-HT) 2A receptor (5-HT2AR) signaling. More importantly, the behavioral deficits in prenatal fluoxetine treated mice were reversed by the application of a 5-HT2AR antagonist. Taken together, our findings suggest that alterations in inhibitory neuronal modulation are responsible for the behavioral alterations following prenatal exposure to SSRIs.


Subject(s)
Memory, Short-Term/drug effects , Prenatal Exposure Delayed Effects/physiopathology , Recognition, Psychology/drug effects , Selective Serotonin Reuptake Inhibitors/adverse effects , Social Behavior , Synapses/metabolism , Action Potentials/drug effects , Animals , Behavior, Animal , Female , Fluoxetine/adverse effects , Interneurons/drug effects , Male , Mice, Inbred C57BL , Neural Inhibition/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/drug therapy , Serotonin Antagonists/pharmacology , Serotonin Antagonists/therapeutic use , Synapses/drug effects
20.
Autophagy ; 15(5): 753-770, 2019 05.
Article in English | MEDLINE | ID: mdl-30523761

ABSTRACT

Macroautophagy/autophagy is a lysosome-dependent catabolic process for the turnover of proteins and organelles in eukaryotes. Autophagy plays an important role in immunity and inflammation, as well as metabolism and cell survival. Diverse immune and inflammatory signals induce autophagy in macrophages through pattern recognition receptors, such as toll-like receptors (TLRs). However, the physiological role of autophagy and its signaling mechanisms in microglia remain poorly understood. Microglia are phagocytic immune cells that are resident in the central nervous system and share many characteristics with macrophages. Here, we show that autophagic flux and expression of autophagy-related (Atg) genes in microglia are significantly suppressed upon TLR4 activation by lipopolysaccharide (LPS), in contrast to their stimulation by LPS in macrophages. Metabolomics analysis of the levels of phosphatidylinositol (PtdIns) and its 3-phosphorylated form, PtdIns3P, in combination with bioinformatics prediction, revealed an LPS-induced reduction in the synthesis of PtdIns and PtdIns3P in microglia but not macrophages. Interestingly, inhibition of PI3K, but not MTOR or MAPK1/3, restored autophagic flux with concomitant dephosphorylation and nuclear translocation of FOXO3. A constitutively active form of FOXO3 also induced autophagy, suggesting FOXO3 as a downstream target of the PI3K pathway for autophagy inhibition. LPS treatment impaired phagocytic capacity of microglia, including MAP1LC3B/LC3-associated phagocytosis (LAP) and amyloid ß (Aß) clearance. PI3K inhibition restored LAP and degradation capacity of microglia against Aß. These findings suggest a unique mechanism for the regulation of microglial autophagy and point to the PI3K-FOXO3 pathway as a potential therapeutic target to regulate microglial function in brain disorders. Abbreviations: Atg: autophagy-related gene; Aß: amyloid-ß; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BMDM: bone marrow-derived macrophage; CA: constitutively active; CNS: central nervous system; ZFYVE1/DFCP1: zinc finger, FYVE domain containing 1; FOXO: forkhead box O; ELISA:enzyme-linked immunosorbent assay; HBSS: Hanks balanced salt solution; LAP: LC3-associated phagocytosis; MAP1LC3B: microtubule-associated protein 1 light chain 3; LPS: lipopolysaccharide; LY: LY294002; MTOR: mechanistic target of rapamycin kinase; Pam3CSK4: N-palmitoyl-S-dipalmitoylglyceryl Cys-Ser-(Lys)4; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PLA: proximity ligation assay; Poly(I:C): polyinosinic-polycytidylic acid; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; TLR: Toll-like receptor; TNF: tumor necrosis factor; TFEB: transcription factor EB; TSPO: translocator protein.


Subject(s)
Autophagy/genetics , Forkhead Box Protein O3/genetics , Microglia/physiology , Phagocytosis/genetics , Toll-Like Receptor 4/physiology , Amyloid beta-Peptides/pharmacology , Animals , Animals, Newborn , Autophagy/drug effects , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/genetics , Forkhead Box Protein O3/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...