Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Eur Respir J ; 63(5)2024 May.
Article in English | MEDLINE | ID: mdl-38359963

ABSTRACT

BACKGROUND: We previously identified ezetimibe, an inhibitor of Niemann-Pick C1-like intracellular cholesterol transporter 1 and European Medicines Agency-approved lipid-lowering agent, as a potent autophagy activator. However, its efficacy against pulmonary fibrosis has not yet been evaluated. This study aimed to determine whether ezetimibe has therapeutic potential against idiopathic pulmonary fibrosis. METHODS: Primary lung fibroblasts isolated from both humans and mice were employed for mechanistic in vitro experiments. mRNA sequencing of human lung fibroblasts and gene set enrichment analysis were performed to explore the therapeutic mechanism of ezetimibe. A bleomycin-induced pulmonary fibrosis mouse model was used to examine in vivo efficacy of the drug. Tandem fluorescent-tagged microtubule-associated protein 1 light chain 3 transgenic mice were used to measure autophagic flux. Finally, the medical records of patients with idiopathic pulmonary fibrosis from three different hospitals were reviewed retrospectively, and analyses on survival and lung function were conducted to determine the benefits of ezetimibe. RESULTS: Ezetimibe inhibited myofibroblast differentiation by restoring the mechanistic target of rapamycin complex 1-autophagy axis with fine control of intracellular cholesterol distribution. Serum response factor, a potential autophagic substrate, was identified as a primary downstream effector in this process. Similarly, ezetimibe ameliorated bleomycin-induced pulmonary fibrosis in mice by inhibiting mechanistic target of rapamycin complex 1 activity and increasing autophagic flux, as observed in mouse lung samples. Patients with idiopathic pulmonary fibrosis who regularly used ezetimibe showed decreased rates of all-cause mortality and lung function decline. CONCLUSION: Our study presents ezetimibe as a potential novel therapeutic for idiopathic pulmonary fibrosis.


Subject(s)
Anticholesteremic Agents , Autophagy , Disease Models, Animal , Drug Repositioning , Ezetimibe , Idiopathic Pulmonary Fibrosis , Ezetimibe/therapeutic use , Ezetimibe/pharmacology , Animals , Idiopathic Pulmonary Fibrosis/drug therapy , Humans , Mice , Autophagy/drug effects , Male , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/pharmacology , Female , Mice, Transgenic , Bleomycin , Lung/pathology , Lung/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Retrospective Studies , Aged , Middle Aged , Mice, Inbred C57BL , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Cholesterol/metabolism
2.
Dig Liver Dis ; 55(11): 1521-1532, 2023 11.
Article in English | MEDLINE | ID: mdl-37380586

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is associated with imbalance of gut microbiome, indicating participation of gut environment in hepatic health status. Therefore, modulating gut environment via fecal microbiota transplantation (FMT) is a promising therapeutic procedure for NASH patients. However, the effect and mechanism of the FMT remains largely unknown. Here, we investigated the gut-liver axis to understand the FMT-mediated hepatic improvement in NASH. Feces from specific pathogen free mice were infused allogeneically into gastrointestinal tract of mice fed with high fat, high cholesterol and fructose (HFHCF), resulting in suppressing hepatic pathogenic events, featured by decreasing inflammatory and fibrotic mediators. The FMT elevated NF-E2-related factor 2 (NRF2), a key transcription factor that regulates antioxidant enzymes, in livers. The HFHCF-induced NASH increased intestinal permeability with abundant Facklamia and Aerococcus, an imbalanced gut environment that was significantly improved by the FMT, characterized with restoration of intestinal barrier function and an enrichment of Clostridium. Notably, the gut environment created by FMT was inferred to produce metabolites from the aromatic biogenic amine degradation pathway, specifically 4-hydroxyphenylacetic acid (4-HPA), which is known to ameliorate liver injury. We suggest that gut-derived molecules, related to hepatic improvement such as 4-HPA are the potential therapeutic agents for preventing and treating NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/therapy , Fecal Microbiota Transplantation , Oxidative Stress , Inflammation/therapy , Inflammation/pathology
3.
Gastroenterol Rep (Oxf) ; 10: goac037, 2022.
Article in English | MEDLINE | ID: mdl-35982712

ABSTRACT

Background: Ursodeoxycholic acid (UDCA), statins, and ezetimibe (EZE) have demonstrated beneficial effects against non-alcoholic fatty liver disease (NAFLD). We investigated the efficacy of the combination of UDCA and the mix of rosuvastatin (RSV)/EZE in the treatment of NAFLD. Methods: NAFLD mouse models were developed by injecting thioacetamide, fasting, and high-carbohydrate refeeding, high-fat diet, and choline-deficient L-amino acid-defined high-fat diet (CDAHFD). Low-dose UDCA (L-UDCA; 15 mg/kg) or high-dose UDCA (H-UDCA; 30 mg/kg) was administered with RSV/EZE. We also employed an in vitro model of NAFLD developed using palmitic acid-treated Hepa1c1c7 cells. Results: Co-administration of RSV/EZE with UDCA significantly decreased the collagen accumulation, serum alanine aminotransferase (ALT) levels, and mRNA levels of fibrosis-related markers than those observed in the vehicle group in thioacetamide-treated mice (all P < 0.01). In addition, in the group fasted and refed with a high-carbohydrate diet, UDCA/RSV/EZE treatment decreased the number of apoptotic cells and serum ALT levels compared with those observed in the vehicle group (all P < 0.05). Subsequently, H-UDCA/RSV/EZE treatment decreased the number of ballooned hepatocytes and stearoyl-CoA desaturase 1 (SCD-1) mRNA levels (P = 0.027) in the liver of high-fat diet-fed mice compared with those observed in the vehicle group. In the CDAHFD-fed mouse model, UDCA/RSV/EZE significantly attenuated collagen accumulation and fibrosis-related markers compared to those observed in the vehicle group (all P < 0.05). In addition, UDCA/RSV/EZE treatment significantly restored cell survival and decreased the protein levels of apoptosis-related markers compared to RSV/EZE treatment in palmitic acid-treated Hepa1c1c7 cells (all P < 0.05). Conclusion: Combination therapy involving UDCA and RSV/EZE may be a novel strategy for potent inhibition of NAFLD progression.

4.
Nat Commun ; 13(1): 1300, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288580

ABSTRACT

Although autophagy is critical for pancreatic ß-cell function, the role and mechanism of mitophagy in ß-cells are unclear. We studied the role of lysosomal Ca2+ in TFEB activation by mitochondrial or metabolic stress and that of TFEB-mediated mitophagy in ß-cell function. Mitochondrial or metabolic stress induced mitophagy through lysosomal Ca2+ release, increased cytosolic Ca2+ and TFEB activation. Lysosomal Ca2+ replenishment by ER- > lysosome Ca2+ refilling was essential for mitophagy. ß-cell-specific Tfeb knockout (TfebΔß-cell) abrogated high-fat diet (HFD)-induced mitophagy, accompanied by increased ROS and reduced mitochondrial cytochrome c oxidase activity or O2 consumption. TfebΔß-cell mice showed aggravation of HFD-induced glucose intolerance and impaired insulin release. Metabolic or mitochondrial stress induced TFEB-dependent expression of mitophagy receptors including Ndp52 and Optn, contributing to the increased mitophagy. These results suggest crucial roles of lysosomal Ca2+ release coupled with ER- > lysosome Ca2+ refilling and TFEB activation in mitophagy and maintenance of pancreatic ß-cell function during metabolic stress.


Subject(s)
Lysosomes , Mitophagy , Animals , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Mice , Mitochondria/metabolism , Mitophagy/physiology , Stress, Physiological
5.
Redox Biol ; 50: 102235, 2022 04.
Article in English | MEDLINE | ID: mdl-35091323

ABSTRACT

Hepatic lipotoxicity is a crucial factor in nonalcoholic steatohepatitis resulting from excessive saturated fatty acid-induced reactive oxygen species (ROS)-mediated cell death, which is associated with the accumulation of endoplasmic reticulum (ER) stress in the liver. The unfolded protein response (UPR) alleviates ER stress by restoring ER protein folding homeostasis. However, whether UPR contributes ROS elimination under lipotoxicity remains unclear. The Kelch like ECH-associated protein 1 (KEAP1)-nuclear factor, erythroid 2 like 2 (Nrf2) pathway provides antioxidant defense against lipotoxic stress by eliminating ROS and can be activated by the p62-Unc-51 like autophagy activating kinase 1 (ULK1) axis. However, the upstream molecular regulator of the p62-ULK1 axis-induced KEAP1-Nrf2 pathway in the same context remains unidentified. Here, we demonstrated that PKR-like ER kinase (PERK), a UPR sensor, directly phosphorylates p62 and ULK1, thereby activating the noncanonical KEAP1-Nrf2 pathway. We also elucidated the molecular mechanism underlying the PERK-mediated p62-ULK1 axis-dependent noncanonical KEAP1-Nrf2 pathway, which could represent a promising therapeutic strategy against hepatic lipotoxicity.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , Liver , NF-E2-Related Factor 2 , Protein Serine-Threonine Kinases , eIF-2 Kinase , Autophagy , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , eIF-2 Kinase/metabolism
6.
Hepatology ; 75(6): 1523-1538, 2022 06.
Article in English | MEDLINE | ID: mdl-34773257

ABSTRACT

BACKGROUND AND AIMS: Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH. APPROACH AND RESULTS: C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis. CONCLUSIONS: A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH.


Subject(s)
Microbiota , Non-alcoholic Fatty Liver Disease , Animals , Body Weight , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-2 Receptor/metabolism , Inflammation/metabolism , Liver/pathology , Liver Cirrhosis/complications , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology
7.
FASEB J ; 34(1): 898-911, 2020 01.
Article in English | MEDLINE | ID: mdl-31914598

ABSTRACT

Adipogenesis, a critical process that converts adipocyte precursors into adipocytes, is considered a potential therapeutic target for the treatment of obesity. Ezetimibe, a drug approved by the United States Food and Drug Administration, is used for the treatment of hypercholesterolemia. Recently, it was reported to ameliorate high fat diet-induced dyslipidemia in mice and reduce lipid accumulation in hepatocytes through the activation of AMPK. However, the anti-adipogenic effects of ezetimibe and the underlying molecular mechanism have not yet been elucidated. Here, we found that ezetimibe reduced lipid accumulation via activating AMPK during the early phase of adipogenesis. We also observed that ezetimibe inhibited peroxisome proliferator-activated receptor γ, which is a major transcription factor of adipogenesis. Furthermore, ezetimibe-mediated AMPK activation reduced lipid accumulation by inhibiting mTORC1 signaling, leading to the downregulation of lipogenesis-related genes. Mitotic clonal expansion, required for adipogenesis, accelerates cell cycle progression and cell proliferation. We additionally observed that ezetimibe prevented the progression of mitotic clonal expansion by arresting the cell cycle at the G0/G1 phase, which was followed by the inhibition of cell proliferation. Collectively, ezetimibe-mediated inhibition of adipogenesis is dependent on the AMPK-mTORC1 pathway. Thus, we suggest that ezetimibe might be a promising drug for the treatment of obesity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipogenesis/drug effects , Ezetimibe/pharmacology , Lipid Metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , 3T3-L1 Cells , Animals , Azo Compounds , Cell Proliferation , Enzyme Activation , Gene Expression Regulation , Mice , PPAR gamma/metabolism , RNA, Small Interfering/metabolism , Signal Transduction
8.
Autophagy ; 16(11): 1949-1973, 2020 11.
Article in English | MEDLINE | ID: mdl-31913745

ABSTRACT

Lipotoxicity, induced by saturated fatty acid (SFA)-mediated cell death, plays an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The KEAP1 (kelch like ECH associated protein 1)-NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) pathway is a pivotal defense mechanism against lipotoxicity. We previously reported that SQSTM1/p62 has a cytoprotective role against lipotoxicity through activation of the noncanonical KEAP1- NFE2L2 pathway in hepatocytes. However, the underlying mechanisms and physiological relevance of this pathway have not been clearly defined. Here, we demonstrate that NFE2L2-mediated induction of SQSTM1 activates the noncanonical KEAP1-NFE2L2 pathway under lipotoxic conditions. Furthermore, we identified that SQSTM1 induces ULK1 (unc-51 like autophagy activating kinase 1) phosphorylation by facilitating the interaction between AMPK (AMP-activated protein kinase) and ULK1, leading to macroautophagy/autophagy induction, followed by KEAP1 degradation and NFE2L2 activation. Accordingly, the activity of this SQSTM1-mediated noncanonical KEAP1-NFE2L2 pathway conferred hepatoprotection against lipotoxicity in the livers of conventional sqstm1- and liver-specific sqstm1-knockout mice. Moreover, this pathway activity was evident in the livers of patients with nonalcoholic fatty liver. This axis could thus represent a novel target for NAFLD treatment. Abbreviations: ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; BafA1: bafilomycin A1; CM-H2DCFDA:5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; CQ: chloroquine; CUL3: cullin 3; DMSO: dimethyl sulfoxide; FASN: fatty acid synthase; GSTA1: glutathione S-transferase A1; HA: hemagglutinin; Hepa1c1c7: mouse hepatoma cells; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch like ECH associated protein 1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MTORC1: mechanistic target of rapamycin kinase complex 1; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NAC: N-acetyl-L-cysteine; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NQO1: NAD(P)H quinone dehydrogenase 1; PA: palmitic acid; PARP: poly (ADP-ribose) polymerase 1; PRKAA1/2: protein kinase AMP-activated catalytic subunits alpha1/2; RBX1: ring-box 1; ROS: reactive oxygen species; SESN2: sestrin 2; SFA: saturated fatty acid; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; TBK1: TANK binding kinase 1; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; ULK1: unc-51 like autophagy activating kinase.


Subject(s)
Autophagy/physiology , Fatty Acids/toxicity , Hepatocytes/drug effects , Liver/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy/genetics , Fibroblasts/metabolism , Hepatocytes/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/drug effects , Mice, Knockout , NF-E2-Related Factor 2/drug effects , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/drug effects
9.
Autophagy ; 16(1): 86-105, 2020 01.
Article in English | MEDLINE | ID: mdl-30907226

ABSTRACT

Saturated fatty acid (SFA)-induced lipotoxicity is caused by the accumulation of reactive oxygen species (ROS), which is associated with damaged mitochondria. Moreover, lipotoxicity is crucial for the progression of nonalcoholic steatohepatitis (NASH). Autophagy is required for the clearance of protein aggregates or damaged mitochondria to maintain cellular metabolic homeostasis. The NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2)-KEAP1 (kelch like ECH associated protein 1) pathway is essential for the elimination of ROS. ULK1 (unc-51 like autophagy activating kinase 1; yeast Atg1) is involved in the initiation of autophagy; however, its role in lipotoxicity-induced cell death in hepatocytes and mouse liver has not been elucidated. We now show that ULK1 potentiates the interaction between KEAP1 and the autophagy adaptor protein SQSTM1/p62, thereby mediating NFE2L2 activation in a manner requiring SQSTM1-dependent autophagic KEAP1 degradation. Furthermore, ULK1 is required for the autophagic removal of damaged mitochondria and to enhance binding between SQSTM1 and PINK1 (PTEN induced kinase 1). This study demonstrates the molecular mechanisms underlying the cytoprotective role of ULK1 against lipotoxicity. Thus, ULK1 could represent a potential therapeutic target for the treatment of NASH.Abbreviations: ACTB: actin beta; CM-H2DCFDA:5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; CQ: chloroquine; CUL3: cullin 3; DMSO: dimethyl sulfoxide; GSTA1: glutathione S-transferase A1; HA: hemagglutinin; Hepa1c1c7: mouse hepatoma cells; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch like ECH associated protein 1; LPS: lipopolysaccharides; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK8/JNK: mitogen-activated protein kinase 8; MEF: mouse embryonic fibroblast; MFN1: mitofusin 1; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NASH: nonalcoholic steatohepatitis; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NQO1: NAD(P)H quinone dehydrogenase 1; PA: palmitic acid; PARP: poly (ADP-ribose) polymerase 1; PINK1: PTEN induced kinase 1; PRKAA1/2: protein kinase AMP-activated catalytic subunits alpha1/2; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; PRKC/PKC: protein kinase C; RBX1: ring-box 1; ROS: reactive oxygen species; SFA: saturated fatty acid; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/physiology , Cytoprotection/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/genetics , Humans , NF-E2-Related Factor 2/metabolism , Sequestosome-1 Protein/metabolism
10.
Free Radic Biol Med ; 137: 143-157, 2019 06.
Article in English | MEDLINE | ID: mdl-31035006

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a common liver disease associated with metabolic disorders, including obesity and type 2 diabetes (T2D). Despite its worldwide prevalence, there are no effective drugs for the treatment of NASH. The progression of NASH is mainly accelerated by reactive oxygen species (ROS)-induced lipotoxicity. The transcription factor known as nuclear factor erythroid 2-related factor 2 (Nrf2) is pivotal for the elimination of ROS. Accordingly, activators of Nrf2 have been implicated as promising therapeutic targets for the treatment of NASH. Niclosamide (ethanolamine salt; NEN), a drug approved by the US Food and Drug Administration (USFDA), is currently used as an anthelmintic drug for the treatment of parasitic infections. Recently, NEN was shown to improve hepatic steatosis in high-fat diet (HFD)-fed mice. However, the underlying mechanism of its antioxidant function in NASH remains unknown. Here, we demonstrate that NEN induces AMPK-mediated phosphorylation of p62 at S351 that can lead to noncanonical Nrf2 activation. We also demonstrate that NEN protects cells and mouse liver from acute lipotoxic stress through activating p62-dependent Keap1-Nrf2 pathway. Taken together, NEN can be used for clinical applications and has the potential to provide a new therapeutic option for NASH.


Subject(s)
Anthelmintics/therapeutic use , Antioxidants/therapeutic use , Helminthiasis/drug therapy , Liver/metabolism , Niclosamide/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , AMP-Activated Protein Kinase Kinases , Animals , Cell Line , Diet, High-Fat , Disease Models, Animal , Drug Repositioning , Ethanolamines/chemistry , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Niclosamide/chemistry , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
11.
BMB Rep ; 52(3): 190-195, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30021675

ABSTRACT

Acetaminophen (APAP) overdose can cause hepatotoxicity by inducing mitochondrial damage and subsequent necrosis in hepatocytes. Sirtuin2 (Sirt2) is an NAD+-dependent deacetylase that regulates several biological processes, including hepatic gluconeogenesis, as well as inflammatory pathways. We show that APAP decreases the expression of Sirt2. Moreover, the ablation of Sirt2 attenuates APAP-induced liver injuries, such as oxidative stress and mitochondrial damage in hepatocytes. We found that Sirt2 deficiency alleviates the APAP-mediated endoplasmic reticulum (ER) stress and phosphorylation of the p70 ribosomal S6 kinase 1 (S6K1). Moreover, Sirt2 interacts with and deacetylates S6K1, followed by S6K1 phosphorylation induction. This study elucidates the molecular mechanisms underlying the protective role of Sirt2 inactivation in APAP-induced liver injuries. [BMB Reports 2019; 52(3): 190-195].


Subject(s)
Acetaminophen/adverse effects , Sirtuin 2/genetics , Sirtuin 2/physiology , Acetaminophen/pharmacology , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Endoplasmic Reticulum Stress/physiology , Hepatocytes/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Necrosis , Oxidative Stress , Protective Agents , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/physiology , Sirtuin 2/metabolism
12.
Article in English | MEDLINE | ID: mdl-30298052

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder closely linked with type II diabetes (T2D). The progression of NAFLD is associated with the induction of lipogenesis through hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. An increase in lipogenesis induces endoplasmic reticulum (ER) stress and accelerates oxidative liver injury in the pathogenesis of NAFLD. Lobeglitazone, one of thiazolidinediones (TZDs), is used as an antidiabetic drug to lower serum glucose level through an increase in insulin sensitivity. It is known to improve pathological symptoms in animals and humans with NAFLD. However, the underlying molecular mechanism of the protective effects of lobeglitazone against NAFLD has not been elucidated. Here, we show that under the physiological condition of acute lipogenesis, lobeglitazone inhibits hepatic lipid synthesis, the subsequent ER stress, and ω-oxidation of fatty acids by inhibiting the mTORC1 pathway. As a result, lobeglitazone protected mice from lipogenesis-induced oxidative liver injury. Taken together, lobeglitazone might be a suitable drug for the treatment of patients with diabetes and NAFLD.

13.
BMB Rep ; 50(2): 91-96, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27998394

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) provides a cellular defense against oxidative stress by inducing the expression of antioxidant and detoxification enzymes. The calcium antagonist, verapamil, is an FDA-approved drug prescribed for the treatment of hypertension. Here, we show that verapamil acts as a potent Nrf2 activator without causing cytotoxicity, through degradation of Kelch-like ECH-associated protein 1 (Keap1), a Nrf2 repressor. Furthermore, verapamilinduced Keap1 degradation is prominently mediated by a p62-dependent autophagic pathway. Correspondingly, verapamil protects cells from acetaminophen-induced oxidative damage through Nrf2 activation. These results demonstrated the underlying mechanisms for the protective role of verapamil against acetaminophen-induced cytotoxicity. [BMB Reports 2017; 50(2): 91-96].


Subject(s)
Acetaminophen/toxicity , Antihypertensive Agents/pharmacology , Cytoprotection , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Verapamil/pharmacology , Animals , Autophagy/drug effects , Autophagy/genetics , Cells, Cultured , Cytoprotection/drug effects , Cytoprotection/genetics , HEK293 Cells , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Mice , NF-E2-Related Factor 2/genetics , Oxidative Stress/drug effects , Oxidative Stress/genetics , Proteolysis/drug effects , Reactive Oxygen Species/metabolism
14.
Free Radic Res ; 50(12): 1408-1421, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27780373

ABSTRACT

Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.


Subject(s)
RNA-Binding Proteins/metabolism , Sequestosome-1 Protein/metabolism , Animals , Apoptosis/physiology , Autophagy/drug effects , Autophagy/physiology , Cell Death/physiology , Endoplasmic Reticulum Stress/physiology , HEK293 Cells , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology , Tunicamycin/pharmacology
15.
Free Radic Biol Med ; 99: 520-532, 2016 10.
Article in English | MEDLINE | ID: mdl-27634173

ABSTRACT

Oxidative stress is important for the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a chronic disease that ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The nuclear factor erythroid 2-related factor 2-Kelch-like ECH associated protein 1 (Nrf2-Keap1) pathway is essential for cytoprotection against oxidative stress. In this study, we found that oxidative stress or inflammatory biomarkers and TUNEL positive cells were markedly increased in NASH patients compared to normal or simple steatosis. In addition, we identified that the hepatic mRNA levels of Nrf2 target genes such as Nqo-1 and GSTA-1 were significantly increased in NASH patients. Ezetimibe, a drug approved by the Food and Drug Administration for the treatment of hypercholesterolemia, improves NAFLD and alleviates oxidative stress. However, the precise mechanism of its antioxidant function remains largely unknown. We now demonstrate that ezetimibe activates Nrf2-Keap1 pathway which was dependent of autophagy adaptor protein p62, without causing cytotoxicity. Ezetimibe activates AMP-activated protein kinase (AMPK), which in turn phosphorylates p62 (p-S351) via their direct interaction. Correspondingly, Ezetimibe protected liver cells from saturated fatty acid-induced apoptotic cell death through p62-dependent Nrf2 activation. Furthermore, its role as an Nrf2 activator was supported by methione- and choline- deficient (MCD) diet-induced NASH mouse model, showing that ezetimibe decreased the susceptibility of the liver to oxidative injury. These data demonstrate that the molecular mechanisms underlying ezetimibe's antioxidant role in the pathogenesis of NASH.


Subject(s)
Antioxidants/pharmacology , Ezetimibe/pharmacology , Membrane Transport Proteins/genetics , NF-E2-Related Factor 2/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis , Diet/adverse effects , Gene Expression Regulation , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...