Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 36(11): 1551-1567, 2023 11.
Article in English | MEDLINE | ID: mdl-37975507

ABSTRACT

Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.


Subject(s)
Virus Diseases , Viruses , Humans , Biological Evolution , Viruses/genetics , Genome, Viral , Evolution, Molecular
2.
PLoS Biol ; 21(4): e3002092, 2023 04.
Article in English | MEDLINE | ID: mdl-37093882

ABSTRACT

In multipartite viruses, the genome is split into multiple segments, each of which is transmitted via a separate capsid. The existence of multipartite viruses poses a problem, because replication is only possible when all segments are present within the same host. Given this clear cost, why is multipartitism so common in viruses? Most previous hypotheses try to explain how multipartitism could provide an advantage. In so doing, they require scenarios that are unrealistic and that cannot explain viruses with more than 2 multipartite segments. We show theoretically that selection for cheats, which avoid producing a shared gene product, but still benefit from gene products produced by other genomes, can drive the evolution of both multipartite and segmented viruses. We find that multipartitism can evolve via cheating under realistic conditions and does not require unreasonably high coinfection rates or any group-level benefit. Furthermore, the cheating hypothesis is consistent with empirical patterns of cheating and multipartitism across viruses. More broadly, our results show how evolutionary conflict can drive new patterns of genome organisation in viruses and elsewhere.


Subject(s)
Biological Evolution , Viruses , Viruses/genetics , Genome, Viral
3.
Nat Commun ; 12(1): 6928, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836945

ABSTRACT

The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.


Subject(s)
Evolution, Molecular , Genome, Viral , Host Microbial Interactions/genetics , Viruses/genetics , Molecular Mimicry/genetics
4.
J Evol Biol ; 32(10): 1036-1045, 2019 10.
Article in English | MEDLINE | ID: mdl-31271473

ABSTRACT

Cooperative interactions between species, termed mutualisms, play a key role in shaping natural ecosystems, economically important agricultural systems, and in influencing human health. Across different mutualisms, there is significant variation in the benefit that hosts receive from their symbionts. Empirical data suggest that transmission mode can help explain this variation: vertical transmission, where symbionts infect their host's offspring, leads to symbionts that provide greater benefits to their hosts than horizontal transmission, where symbionts leave their host and infect other hosts in the population. However, two different theoretical explanations have been given for this pattern: firstly, vertical transmission aligns the fitness interests of hosts and their symbionts; secondly, vertical transmission leads to increased relatedness between symbionts sharing a host, favouring cooperation between symbionts. We used a combination of analytical models and dynamic simulations to tease these factors apart, in order to compare their separate influences and see how they interact. We found that relatedness between symbionts sharing a host, rather than transmission mode per se, was the most important factor driving symbiont cooperation. Transmission mode mattered mainly because it determined relatedness. We also found evolutionary branching throughout much of our simulation, suggesting that a combination of transmission mode and multiplicity of infections could lead to the stable coexistence of different symbiont strategies.


Subject(s)
Biological Evolution , Models, Biological , Symbiosis/genetics , Computer Simulation
5.
Nat Microbiol ; 4(6): 910-911, 2019 06.
Article in English | MEDLINE | ID: mdl-31118503
6.
Virus Res ; 265: 94-101, 2019 05.
Article in English | MEDLINE | ID: mdl-30894320

ABSTRACT

Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collective infectious unit. We found that collective infectious units could be favoured if cells infected by multiple viral genomes were significantly more productive than cells infected by just one viral genome, and especially if there were also efficiency benefits to packaging multiple viral genomes inside the same infectious unit. We also found that if some viral sequences are defective, then collective infectious units could evolve to become very large, but that if these defective sequences interfered with wild-type virus replication, then collective infectious units were disfavoured.


Subject(s)
Defective Viruses/genetics , Evolution, Molecular , Genome, Viral , Virion/genetics , Models, Theoretical , RNA, Viral , Virus Assembly , Virus Diseases/transmission , Virus Replication
7.
Virus Evol ; 4(2): vey028, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30288300

ABSTRACT

In many viral infections, a large number of different genetic variants can coexist within a host, leading to more virulent infections that are better able to evolve antiviral resistance and adapt to new hosts. But how is this diversity maintained? Why do faster-growing variants not outcompete slower-growing variants, and erode this diversity? One hypothesis is if there are mutually beneficial interactions between variants, with host cells infected by multiple different viral genomes producing more, or more effective, virions. We modelled this hypothesis with both mathematical models and simulations, and found that moderate levels of beneficial coinfection can maintain high levels of coexistence, even when coinfection is relatively rare, and when there are significant fitness differences between competing variants. Rare variants are more likely to be coinfecting with a different variant, and hence beneficial coinfection increases the relative fitness of rare variants through negative frequency dependence, and maintains diversity. We further find that coexisting variants sometimes reach unequal frequencies, depending on the extent to which different variants benefit from coinfection, and the ratio of variants which leads to the most productive infected cells. These factors could help drive the evolution of defective interfering particles, and help to explain why the different segments of multipartite viruses persist at different equilibrium frequencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...