Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884490

ABSTRACT

The early-life microbiome (ELM) interacts with the psychosocial environment, in particular during early-life adversity (ELA), defining life-long health trajectories. The ELM also plays a significant role in the maturation of the immune system. We hypothesised that, in this context, the resilience of the oral microbiomes, despite being composed of diverse and distinct communities, allows them to retain an imprint of the early environment. Using 16S amplicon sequencing on the EpiPath cohort, we demonstrate that ELA leaves an imprint on both the salivary and buccal oral microbiome 24 years after exposure to adversity. Furthermore, the changes in both communities were associated with increased activation, maturation, and senescence of both innate and adaptive immune cells, although the interaction was partly dependent on prior herpesviridae exposure and current smoking. Our data suggest the presence of multiple links between ELA, Immunosenescence, and cytotoxicity that occur through long-term changes in the microbiome.


Subject(s)
Adverse Childhood Experiences/statistics & numerical data , Bacteria/classification , Immune System , Life Change Events , Microbiota , Mouth Mucosa/microbiology , Saliva/microbiology , Adult , Bacteria/genetics , Bacteria/isolation & purification , Case-Control Studies , Child , Cohort Studies , Female , Humans , Male , Young Adult
2.
Front Immunol ; 12: 674532, 2021.
Article in English | MEDLINE | ID: mdl-34394074

ABSTRACT

Early Life Adversity (ELA) is closely associated with the risk for developing diseases later in life, such as autoimmune diseases, type-2 diabetes and cardiovascular diseases. In humans, early parental separation, physical and sexual abuse or low social-economic status during childhood are known to have great impact on brain development, in the hormonal system and immune responses. Maternal deprivation (MD) is the closest animal model available to the human situation. This paradigm induces long lasting behavioral effects, causes changes in the HPA axis and affects the immune system. However, the mechanisms underlying changes in the immune response after ELA are still not fully understood. In this study we investigated how ELA changes the immune system, through an unbiased analysis, viSNE, and addressed specially the NK immune cell population and its functionality. We have demonstrated that maternal separation, in both humans and rats, significantly affects the sensitivity of the immune system in adulthood. Particularly, NK cells' profile and response to target cell lines are significantly changed after ELA. These immune cells in rats are not only less cytotoxic towards YAC-1 cells, but also show a clear increase in the expression of maturation markers after 3h of maternal separation. Similarly, individuals who suffered from ELA display significant changes in the cytotoxic profile of NK cells together with decreased degranulation capacity. These results suggest that one of the key mechanisms by which the immune system becomes impaired after ELA might be due to a shift on the senescent state of the cells, specifically NK cells. Elucidation of such a mechanism highlights the importance of ELA prevention and how NK targeted immunotherapy might help attenuating ELA consequences.


Subject(s)
Adverse Childhood Experiences , Growth and Development/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/physiology , Stress, Psychological/immunology , Adaptive Immunity/immunology , Adaptive Immunity/physiology , Adult , Animals , Corticosterone/blood , Disease Models, Animal , Female , Glucose , Growth and Development/physiology , Humans , Male , Maternal Deprivation , Rats , Rats, Wistar
3.
Dev Psychopathol ; 32(3): 853-863, 2020 08.
Article in English | MEDLINE | ID: mdl-31407649

ABSTRACT

Early life adversity (ELA) has been associated with inflammation and immunosenescence, as well as hyporeactivity of the HPA axis. Because the immune system and the HPA axis are tightly intertwined around the glucocorticoid receptor (GR), we examined peripheral GR functionality in the EpiPath cohort among participants who either had been exposed to ELA (separation from parents and/or institutionalization followed by adoption; n = 40) or had been reared by their biological parents (n = 72).Expression of the strict GR target genes FKBP5 and GILZ as well as total and 1F and 1H GR transcripts were similar between groups. Furthermore, there were no differences in GR sensitivity, examined by the effects of dexamethasone on IL6 production in LPS-stimulated whole blood. Although we did not find differences in methylation at the GR 1F exon or promoter region, we identified a region of the GR 1H promoter (CpG 1-9) that showed lower methylation levels in ELA.Our results suggest that peripheral GR signaling was unperturbed in our cohort and the observed immune phenotype does not appear to be secondary to an altered GR response to the perturbed HPA axis and glucocorticoid (GC) profile, although we are limited in our measures of GR activity and time points.


Subject(s)
Hypothalamo-Hypophyseal System , Receptors, Glucocorticoid , DNA Methylation , Humans , Hypothalamo-Hypophyseal System/metabolism , Leukocytes/metabolism , Pituitary-Adrenal System/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism
4.
Front Immunol ; 8: 1263, 2017.
Article in English | MEDLINE | ID: mdl-29089944

ABSTRACT

Early life adversity (ELA) increases the risk for multiple age-related diseases, such as diabetes type 2 and cardiovascular disease. As prevalence is high, ELA poses a major and global public health problem. Immunosenescence, or aging of the immune system, has been proposed to underlie the association between ELA and long-term health consequences. However, it is unclear what drives ELA-associated immunosenescence and which cells are primarily affected. We investigated different biomarkers of immunosenescence in a healthy subset of the EpiPath cohort. Participants were either parent-reared (Ctrl, n = 59) or had experienced separation from their parents in early childhood and were subsequently adopted (ELA, n = 18). No difference was observed in telomere length or in methylation levels of age-related CpGs in whole blood, containing a heterogeneous mixture of immune cells. However, when specifically investigating T cells, we found a higher expression of senescence markers (CD57) in ELA. In addition, senescent T cells (CD57+) in ELA had an increased cytolytic potential compared to senescent cells in controls. With a mediation analysis we demonstrated that cytomegalovirus (CMV) infection, which is an important driving force of immunosenescence, largely accounted for elevated CD57 expression observed in ELA. Leukocyte telomere length may obscure cell-specific immunosenescence; here, we demonstrated that the use of cell surface markers of senescence can be more informative. Our data suggest that ELA may increase the risk of CMV infection in early childhood, thereby mediating the effect of ELA on T cell-specific immunosenescence. Thus, future studies should include CMV as a confounder or selectively investigate CMV seronegative cohorts.

5.
J Immunol ; 199(12): 4046-4055, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29133294

ABSTRACT

Early life adversity (ELA) has been associated with an increased risk for diseases in which the immune system plays a critical role. The ELA immune phenotype is characterized by inflammation, impaired cellular immunity, and immunosenescence. However, data on cell-specific immune effects are largely absent. Additionally, stress systems and health behaviors are altered in ELA, which may contribute to the generation of the ELA immune phenotype. The present investigation tested cell-specific immune differences in relationship to the ELA immune phenotype, altered stress parameters, and health behaviors in individuals with ELA (n = 42) and those without a history of ELA (control, n = 73). Relative number and activation status (CD25, CD69, HLA-DR, CD11a, CD11b) of monocytes, NK cells, B cells, T cells, and their main subsets were assessed by flow cytometry. ELA was associated with significantly reduced numbers of CD69+CD8+ T cells (p = 0.022), increased numbers of HLA-DR+ CD4 and HLA-DR+ CD8 T cells (p < 0.001), as well as increased numbers of CD25+CD8+ T cells (p = 0.036). ELA also showed a trend toward higher numbers of CCR4+CXCR3-CCR6+ CD4 T cells. Taken together, our data suggest an elevated state of immune activation in ELA, in which particularly T cells are affected. Although several aspects of the ELA immune phenotype were related to increased activation markers, neither stress nor health-risk behaviors explained the observed group differences. Thus, the state of immune activation in ELA does not seem to be secondary to alterations in the stress system or health-risk behaviors, but rather a primary effect of early life programming on immune cells.


Subject(s)
Child, Adopted , Inflammation/etiology , Life Change Events , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Case-Control Studies , Cellular Senescence , Child, Institutionalized , Exercise , Female , Health Behavior , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/immunology , Immunophenotyping , Inflammation/immunology , Interleukin-6/blood , Luxembourg , Lymphocyte Activation , Lymphocyte Count , Male , Obesity/epidemiology , Smoking/epidemiology , Stress, Psychological/epidemiology , Stress, Psychological/immunology , Telomere Homeostasis/immunology , Young Adult
6.
Clin Epigenetics ; 8: 92, 2016.
Article in English | MEDLINE | ID: mdl-27602172

ABSTRACT

DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC), is considered to be one of the principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming evident, where small (<10 %) changes to intermediate methylation levels are associated with complex disease phenotypes. This has resulted in two clear methylation paradigms. The latter "subtle change" paradigm is rapidly becoming the epigenetic hallmark of complex disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and meaning of these small differences. Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to numerous observational/association studies being performed. Although this expectation remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of such subtle methylation changes. Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA methylation, extensive 5'UTR splicing, and microvariability gives rise to the overall level and relative distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3C1 CpG island alters the NR3C1 transcription and eventually protein isoforms in the tissues, resulting in subtle but visible physiological variability. This review addresses the current pathophysiological and clinical associations of such characteristically small DNA methylation changes, the ever-growing roles of DNA methylation and the evidence available, particularly from the glucocorticoid receptor of the cascade of events initiated by such subtle methylation changes, as well as addressing the underlying question as to what represents a genuine biologically significant difference in methylation.


Subject(s)
CpG Islands , DNA Methylation , Gene Expression , Receptors, Glucocorticoid/genetics , 5' Untranslated Regions , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Environmental Exposure , Epigenesis, Genetic , Gene Expression Regulation , Humans , Phenotype , Protein Isoforms/genetics
7.
Nucleic Acids Res ; 44(6): 2628-45, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26615195

ABSTRACT

The variability and complexity of the transcription initiation process was examined by adapting RNA ligase-mediated rapid amplification of 5' cDNA ends (5'-RACE) to Next-Generation Sequencing (NGS). We oligo-labelled 5'-m(7)G-capped mRNA from two genes, the simple mono-exonic Beta-2-Adrenoceptor (ADRB2R)and the complex multi-exonic Glucocorticoid Receptor (GR, NR3C1), and detected a variability in TSS location that has received little attention up to now. Transcription was not initiated at a fixed TSS, but from loci of 4 to 10 adjacent nucleotides. Individual TSSs had frequencies from <0.001% to 38.5% of the total gene-specific 5' m(7)G-capped transcripts. ADRB2R used a single locus consisting of 4 adjacent TSSs. Unstimulated, the GR used a total of 358 TSSs distributed throughout 38 loci, that were principally in the 5' UTRs and were spliced using established donor and acceptor sites. Complete demethylation of the epigenetically sensitive GR promoter with 5-azacytidine induced one new locus and 127 TSSs, 12 of which were unique. We induced GR transcription with dexamethasone and Interferon-γ, adding one new locus and 185 additional TSSs distributed throughout the promoter region. In-vitro the TSS microvariability regulated mRNA translation efficiency and the relative abundance of the different GRN-terminal protein isoform levels.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Amplification Techniques , Receptors, Adrenergic, beta-2/genetics , Receptors, Glucocorticoid/genetics , Transcription Initiation Site , Transcription Initiation, Genetic , 5' Untranslated Regions , Azacitidine/pharmacology , Cell Line, Tumor , Dexamethasone/pharmacology , Exons , Genetic Loci , Genetic Variation , Humans , Interferon-gamma/pharmacology , Introns , Oligonucleotides/chemistry , Promoter Regions, Genetic , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Caps/genetics , RNA Caps/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Glucocorticoid/metabolism , Staining and Labeling , Transcription Initiation, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...