Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
J Biomed Mater Res A ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725302

ABSTRACT

Tightly sealed peri-implant gingival tissue provides a barrier against oral bacterial invasion, protecting the alveolar bone and maintaining long-term implant survival. To investigate if zinc can enhance the integration between peri-implant gingival tissue and abutment surface, we herein present novel zinc/chitosan/gelatin (Zn/CS/Gel) coatings prepared using the electrophoretic deposition (EPD) technique. The effect of these coatings on human gingival fibroblasts (hGFs) was investigated by culturing these cells on top of the EPD coatings. Surface characterization demonstrated that Zn2+ were released in a sustained and pH-responsive manner. The preclinical cell culture evaluation of these coatings indicated that the zinc-containing coatings enhanced cell migration, adhesion and collagen secretion of hGFs. Moreover, the zinc-containing coatings exhibited antibacterial efficacy by inhibiting the growth of Porphyromonas gingivalis and reducing attachment of Staphylococcus aureus. Notably, zinc-free CS/Gel coatings prevented attachment of P. gingivalis as well. The coatings were also shown to be cytocompatible with epithelial cells and osteoblasts, which are other relevant cell types which surround dental implants after clinical placement. Based on our findings, it can be concluded that Zn-containing coatings hold promise to enhance the adhesion of gingival tissue to the implant surface, which may potentially contribute to the formation of a robust peri-implant soft sealing counteracting bacterial invasion.

2.
Mater Today Bio ; 26: 101059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693996

ABSTRACT

Despite the immense need for effective treatment of spinal cord injury (SCI), no successful repair strategy has yet been clinically implemented. Multifunctional biomaterials, based on porcine adipose tissue-derived extracellular matrix (adECM) and reduced graphene oxide (rGO), were recently shown to stimulate in vitro neural stem cell growth and differentiation. Nevertheless, their functional performance in clinically more relevant in vivo conditions remains largely unknown. Before clinical application of these adECM-rGO nanocomposites can be considered, a rigorous assessment of the cytotoxicity and biocompatibility of these biomaterials is required. For instance, xenogeneic adECM scaffolds could still harbour potential immunogenicity following decellularization. In addition, the toxicity of rGO has been studied before, yet often in experimental settings that do not bear relevance to regenerative medicine. Therefore, the present study aimed to assess both the in vitro as well as in vivo safety of adECM and adECM-rGO scaffolds. First, pulmonary, renal and hepato-cytotoxicity as well as macrophage polarization studies showed that scaffolds were benign invitro. Then, a laminectomy was performed at the 10th thoracic vertebra, and scaffolds were implanted directly contacting the spinal cord. For a total duration of 6 weeks, animal welfare was not negatively affected. Histological analysis demonstrated the degradation of adECM scaffolds and subsequent tissue remodeling. Graphene-based scaffolds showed a very limited fibrous encapsulation, while rGO sheets were engulfed by foreign body giant cells. Furthermore, all scaffolds were infiltrated by macrophages, which were largely polarized towards a pro-regenerative phenotype. Lastly, organ-specific histopathology and biochemical analysis of blood did not reveal any adverse effects. In summary, both adECM and adECM-rGO implants were biocompatible upon laminectomy while establishing a pro-regenerative microenvironment, which justifies further research on their therapeutic potential for treatment of SCI.

4.
Biotechnol J ; 19(2): e2300469, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403405

ABSTRACT

Colloidal gels assembled from gelatin nanoparticles (GNPs) as particulate building blocks show strong promise to solve challenges in cell delivery and biofabrication, such as low cell survival and limited spatial retention. These gels offer evident advantages to facilitate cell encapsulation, but research on this topic is still limited, which hampers our understanding of the relationship between the physicochemical and biological properties of cell-laden colloidal gels. Human adipose-derived mesenchymal stem cells were successfully encapsulated in gelatin colloidal gels and evaluated their mechanical and biological performance over 7 days. The cells dispersed well within the gels without compromising gel cohesiveness, remained viable, and spread throughout the gels. Cells partially coated with silica were introduced into these gels, which increased their storage moduli and decreased their self-healing capacity after 7 days. This finding demonstrates the ability to modulate gel stiffness by incorporating cells partially coated with silica, without altering the solid content or introducing additional particles. Our work presents an efficient method for cell encapsulation while preserving gel integrity, expanding the applicability of colloidal hydrogels for tissue engineering and bioprinting. Overall, our study contributes to the design of improved cell delivery systems and biofabrication techniques.


Subject(s)
Bioprinting , Mesenchymal Stem Cells , Humans , Hydrogels/chemistry , Tissue Engineering , Gelatin/chemistry , Silicon Dioxide , Tissue Scaffolds/chemistry
5.
Nano Lett ; 23(23): 11091-11098, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37967168

ABSTRACT

Gelatin nanoparticles (GNPs) have been widely studied for a plethora of biomedical applications, but their formation mechanism remains poorly understood, which precludes precise control over their physicochemical properties. This leads to time-consuming parameter adjustments without a fundamental grasp of the underlying mechanism. Here, we analyze and visualize in a time-resolved manner the mechanism by which GNPs are formed during desolvation of gelatin as a function of gelatin molecular weight and type of desolvating agent. Through various analytical and imaging techniques, we unveil a multistage process that is initiated by the formation of primary particles that are ∼18 nm in diameter (wet state). These primary particles subsequently assemble into colloidally stable GNPs with a raspberry-like structure and a hydrodynamic diameter of ∼300 nm. Our results create a basic understanding of the formation mechanism of gelatin nanoparticles, which opens new opportunities for precisely tuning their physicochemical and biofunctional properties.

6.
Biomacromolecules ; 24(6): 2755-2765, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37222557

ABSTRACT

We establish a versatile hydrogel platform based on modular building blocks that allows the design of hydrogels with tailored physical architecture and mechanical properties. We demonstrate its versatility by assembling (i) a fully monolithic gelatin methacryloyl (Gel-MA) hydrogel, (ii) a hybrid hydrogel composed of 1:1 Gel-MA and gelatin nanoparticles, and (iii) a fully particulate hydrogel based on methacryloyl-modified gelatin nanoparticles. The hydrogels were formulated to exhibit the same solid content and comparable storage modulus but different stiffness and viscoelastic stress relaxation. The incorporation of particles resulted in softer hydrogels with enhanced stress relaxation. Murine osteoblastic cells cultured in two-dimensional (2D) on hydrogels showed proliferation and metabolic activity comparable to established collagen hydrogels. Furthermore, the osteoblastic cells showed a trend of increased cell numbers, cell expansion, and more defined protrusions on stiffer hydrogels. Hence, modular assembly allows the design of hydrogels with tailored mechanical properties and the potential to alter cell behavior.


Subject(s)
Gelatin , Hydrogels , Mice , Animals , Hydrogels/pharmacology , Collagen , Cell Proliferation , Tissue Engineering/methods
7.
Mater Today Bio ; 19: 100599, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37063249

ABSTRACT

Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.

8.
Int J Nanomedicine ; 18: 1599-1612, 2023.
Article in English | MEDLINE | ID: mdl-37013026

ABSTRACT

Introduction: There has recently been a surge of interest in mesoporous bioactive glass nanoparticles (MBGNs) as multi-functional nanocarriers for application in bone-reconstructive and -regenerative surgery. Their excellent control over their structural and physicochemical properties renders these nanoparticles suitable for the intracellular delivery of therapeutic agents to combat degenerative bone diseases, such as bone infection, or bone cancer. Generally, the therapeutic efficacy of nanocarriers strongly depends on the efficacy of their cellular uptake, which is determined by numerous factors including cellular features and the physicochemical characteristics of nanocarriers, particularly surface charge. In this study, we have systematically investigated the effect of the surface charge of MBGNs doped with copper as a model therapeutic agent on cellular uptake by both macrophages and pre-osteoblast cells involved in bone healing and bone infections to guide the future design of MBGN-based nanocarriers. Methods: Cu-MBGNs with negative, neutral, and positive surface charges were synthesized and their cellular uptake efficiency was assessed. Additionally, the intracellular fate of internalized nanoparticles along with their ability to deliver therapeutic cargo was studied in detail. Results: The results showed that both cell types internalized Cu-MBGNs regardless of their surface charge, indicating that cellular uptake of nanoparticles is a complex process influenced by multiple factors. This similarity in cellular uptake was attributed to the formation of a protein corona surrounding the nanoparticles when exposed to protein-rich biological media, which masks the original nanoparticle surface. Once internalized, the nanoparticles were found to mainly colocalize with lysosomes, exposing them to a more compartmentalized and acidic environment. Furthermore, we verified that Cu-MBGNs released their ionic components (Si, Ca, and Cu ions) in both acidic and neutral environments, leading to the delivery of these therapeutic cargos intracellularly. Conclusion: The effective internalization of Cu-MBGNs and their ability to deliver cargos intracellularly highlight their potential as intracellular delivery nanocarriers for bone-regenerative and -healing applications.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Nanoparticles/chemistry , Bone Regeneration , Wound Healing , Glass/chemistry
9.
Tissue Eng Part C Methods ; 29(5): 216-227, 2023 05.
Article in English | MEDLINE | ID: mdl-37071134

ABSTRACT

Stromal vascular fraction (SVF) is the primary isolate obtained after enzymatic digestion of adipose tissue that contains various cell types. Its successful application for cell-based construct preparation in an intra-operative setting for clinical bone augmentation and regeneration has been previously reported. However, the performance of SVF-based constructs compared with traditional ex vivo expanded adipose tissue-derived mesenchymal stromal cells (ATMSCs) remains unclear and direct comparative analyses are scarce. Consequently, we here aimed at comparing the in vitro osteogenic differentiation capacity of donor-matched SVF versus ATMSCs as well as their osteoinductive capacity. Human adipose tissue from nine different donors was used to isolate SVF, which was further purified via plastic-adherence to obtain donor-matched ATMSCs. Both cell populations were immunophenotypically characterized for mesenchymal stromal cell, endothelial, and hematopoietic markers after isolation and immunocytochemical staining was used to identify different cell types during prolonged cell culture. Based on normalization using plastic-adherence fraction determination, SVF and ATMSCs were seeded and cultured in osteogenic differentiation medium for 28 days. Further, SVF and ATMSCs were seeded onto devitalized bovine bone granules and subcutaneously implanted into nude mice. After 42 days of implantation, granules were retrieved, histologically processed, and stained with hematoxylin and eosin (HE) to assess ectopic bone formation. The ATMSCs were shown to be a homogenous cell population during cell culture, whereas SVF cultures consisted of multiple cell types. All donor-matched comparisons showed either accelerated or stronger mineralization for SVF cultures in vitro. However, neither SVF nor ATMSCs loaded on devitalized bone granules induced ectopic bone formation on subcutaneous implantation, as opposed to control granules loaded with bone morphogenetic protein-2 (BMP-2), which triggered ectopic bone formation with 100% incidence. Despite the observed lack of osteoinduction, our findings provide important in vitro evidence on the osteogenic superiority of intra-operatively available SVF as compared with donor-matched ATMSCs. Consequently, further studies should focus on optimizing the efficacy of these cell populations for implementation in orthotopic bone fracture or defect treatment.


Subject(s)
Osteogenesis , Stromal Cells , Mice , Humans , Animals , Cattle , Mice, Nude , Adipose Tissue , Adipocytes , Cell Differentiation
10.
Biomater Adv ; 144: 213198, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36424276

ABSTRACT

Successful treatment of infected bone defects caused by multi-drug resistant bacteria (MDR) has become a major clinical challenge, stressing the urgent need for effective antibacterial bone graft substitutes. Mesoporous bioactive glass nanoparticles (MBGNs), a rapidly emerging class of nanoscale biomaterials, offer specific advantages for the development of biomaterials to treat bone infection due to endowed antibacterial features. Herein, we propose a facile post-modification sol-gel strategy to synthesize effective antibacterial MBGNs doped with copper ions (Cu-PMMBGNs). In this strategy, amine functional groups as chelating agents were introduced to premade mesoporous silica nanoparticles (MSNs) which further facilitate the incorporation of high content of calcium (∼17 mol%) and copper ions (∼8 mol%) without compromising nanoparticle shape, mesoporosity, and homogeneity. The resulting nanoparticles were degradable and showed rapidly induce abundant deposition of apatite crystals on their surface upon soaking in simulated body fluids (SBF) after 3 days. Cu-PMMBGNs exhibited a dose-dependent inhibitory effect on Methicillin-resistant Staphylococcus aureus (MRSA) bacteria, which are common pathogens causing severe bone infections. Most importantly, the nanoparticles containing 5 mol% copper ions at concentrations of 500 and 1000 µg.mL-1 showed highly effective antibacterial performance as reflected by a 99.9 % reduction of bacterial viability. Nanoparticles at a concentration of 500 µg.mL-1 showed no significant cytotoxicity toward preosteoblast cells (∼85-89 % cell viability) compared to the control group. In addition, the nanoscale properties of synthesized Cu-PMMBGNs (∼100 nm in size) facilitated their internalization into preosteoblast cells, which highlights their potential as intracellular carriers in combating intracellular bacteria. Therefore, these copper-doped nanoparticles hold strong promise for use as an antibacterial component in antibacterial bone substitutes such as hydrogels, nanocomposites, and coatings.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Copper/pharmacology , Biocompatible Materials , Anti-Bacterial Agents/pharmacology , Ions
11.
Chem Rev ; 123(2): 834-873, 2023 01 25.
Article in English | MEDLINE | ID: mdl-35930422

ABSTRACT

Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.


Subject(s)
Biocompatible Materials , Hydrogels , Humans , Hydrogels/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Tissue Engineering
12.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234551

ABSTRACT

Messenger RNA (mRNA) is increasingly gaining interest as a modality in vaccination and protein replacement therapy. In regenerative medicine, the mRNA-mediated expression of growth factors has shown promising results. In contrast to protein delivery, successful mRNA delivery requires a vector to induce cellular uptake and subsequent endosomal escape to reach its end destination, the ribosome. Current non-viral vectors such as lipid- or polymer-based nanoparticles have been successfully used to express mRNA-encoded proteins. However, to advance the use of mRNA in regenerative medicine, it is required to assess the compatibility of mRNA with biomaterials that are typically applied in this field. Herein, we investigated the complexation, cellular uptake and maintenance of the integrity of mRNA complexed with gelatin nanoparticles (GNPs). To this end, GNPs with positive, neutral or negative surface charge were synthesized to assess their ability to bind and transport mRNA into cells. Positively charged GNPs exhibited the highest binding affinity and transported substantial amounts of mRNA into pre-osteoblastic cells, as assessed by confocal microscopy using fluorescently labeled mRNA. Furthermore, the GNP-bound mRNA remained stable. However, no expression of mRNA-encoded protein was detected, which is likely related to insufficient endosomal escape and/or mRNA release from the GNPs. Our results indicate that gelatin-based nanomaterials interact with mRNA in a charge-dependent manner and also mediate cellular uptake. These results create the basis for the incorporation of further functionality to yield endosomal release.

13.
Tissue Eng Part C Methods ; 28(7): 314-324, 2022 07.
Article in English | MEDLINE | ID: mdl-35272498

ABSTRACT

Implant coatings are frequently applied to modulate tissue response and delivery of drugs. Copper (Cu)-containing coatings on dental implant abutments have been proposed to improve soft tissue integration and reduce the risk for peri-implant infections. However, precise control over Cu loading and release kinetics remains a major challenge. In this study, we introduced a bottom-up coating deposition method based on nanoparticle assembly to allow for local release of Cu ions from implant surfaces. We first doped mesoporous bioactive glass (MBG) nanoparticles with various amounts of Cu. Subsequently, we suspended these Cu-doped MBG (Cu-MBG), Cu-free MBG nanoparticles, or mixtures thereof in chitosan solution and prepared a series of composite coatings on commercially pure titanium disks as model surfaces for transmucosal components of bone implants through electrophoretic deposition (EPD). By changing the Cu-MBG:MBG ratio of the composite coatings, we controlled the Cu release kinetics without changing other coating properties. Human gingival fibroblasts proliferated on the composite coatings except for coatings with the highest amount of Cu, which inhibited their proliferation. The migration rate of human umbilical vein endothelial cells cultured on the composite coatings was highest on coatings containing equal amounts of Cu-MBG and Cu-free MBG. Antibacterial tests confirmed that Cu-containing coatings reduced the growth of Porphyromonas gingivalis up to fivefold compared with uncoated implants. In conclusion, our data indicate that the EPD method is suitable to deposit nanoparticle-based coatings onto dental implants, which enhance endothelial cell migration and reduce bacterial growth. Impact statement Precise control over the release of therapeutic agents remains a major challenge for implant coatings. In this study, we introduce a simple and cost-effective way to tune the release of angiogenic and antibacterial copper ions using the electrophoretic deposition technique. Due to the flexibility and mild processing conditions of this technique, our method can also be used to incorporate other therapeutic agents onto implant surfaces.


Subject(s)
Chitosan , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Copper/pharmacology , Endothelial Cells , Humans , Ions
14.
Tissue Eng Part A ; 28(11-12): 461-477, 2022 06.
Article in English | MEDLINE | ID: mdl-35107351

ABSTRACT

Calcium phosphates (CaPs) and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale CaP and silicate-based particles of increased specific surface area, chemical reactivity, and solubility, which offer specific advantages compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of CaP and silicate-based nanoparticles within the fields of (i) local delivery of therapeutic agents, (ii) functionalization of biomaterial scaffolds or implant coatings, and (iii) bioimaging applications. Impact statement This review provides a critical perspective on the history and emerging trends of the two main classes of bioceramic nanoparticles, that is, calcium phosphate (CaP) and silicate-based nanoparticles. While most reviews in literature focus on either CaP or silicate-based nanoparticles, our review evaluates both classes of bioceramic nanoparticles simultaneously. This combined review offers the opportunity to analyze differences and similarities with respect to the historic development and emerging trends within both fields of bioceramics research.


Subject(s)
Calcium Phosphates , Nanoparticles , Biocompatible Materials , Calcium Phosphates/chemistry , Nanoparticles/chemistry , Silicates/chemistry
15.
Tissue Eng Part B Rev ; 28(1): 141-159, 2022 02.
Article in English | MEDLINE | ID: mdl-33375900

ABSTRACT

Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Biocompatible Materials , Bone and Bones , Collagen , Tissue Engineering/methods
16.
J Orthop Res ; 40(3): 624-633, 2022 03.
Article in English | MEDLINE | ID: mdl-33871061

ABSTRACT

Currently, steel implants are used for osteosynthesis of (comminuted) fractures and intra-articular bone defects. These osteosyntheses can sometimes be complicated procedures and can have several drawbacks including stress shielding of the bone. A bone glue might be a safe and effective alternative to current materials. Despite numerous animal studies on bone adhesives, no such material is clinically applied yet. We have conducted a systematic review to summarize the evidence in experimental animal models used in research on bone adhesive materials for trauma and orthopedic surgery. Additionally, we analysed the efficacy of the different bone adhesives for different experimental designs. A heterogeneity in experimental parameters including animal species, defect types, and control measurements resulted in a wide variety in experimental models. In addition, no standard outcome measurements could be identified. Meta-analysis on bone regeneration between adhesive treatment and nonadhesive treatment showed a high heterogeneity and no statistically significant overall effect (M: -0.71, 95% confidence interval [CI]: -1.63-0.21, p = 0.13). Besides, currently there is not enough evidence to draw conclusions based on the effectiveness of the individual types of adhesives or experimental models. A positive statistically significant effect was found for the adhesive treatment in comparison with conventional osteosynthesis materials (M: 2.49, 95% CI: 1.20-3.79, p = 0.0002). To enhance progression in bone adhesive research and provide valuable evidence for clinical application, more standard experimental parameters and a higher reporting quality in animal studies are needed. Statement of Clinical Significance: Current materials restoring anatomical alignments of bones have several drawbacks. A (biodegradable) adhesive for fixating bone defects can be a treatment breakthrough. Although numerous bone adhesives have been researched, most seemed to fail at the preclinical stage. An overview in this field is missing. This systematic review highlights the relevant parameters for design of experimental bone adhesive studies. It demonstrates evidence regarding benefit of bone adhesives but also that the quality of reporting and the risk of bias in studies need to be improved. The results will aid in designing better quality animal studies for bone adhesive research with higher translational value.


Subject(s)
Adhesives , Orthopedic Procedures , Animals , Bone Cements , Bone and Bones , Models, Animal
17.
Acta Biomater ; 138: 124-132, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34740854

ABSTRACT

Viscoelastic properties of hydrogels such as stress relaxation or plasticity have been recognized as important mechanical cues that dictate the migration, proliferation, and differentiation of embedded cells. Stress relaxation rates in conventional hydrogels are usually much slower than cellular processes, which impedes rapid cellularization of these elastic networks. Colloidal hydrogels assembled from nanoscale building blocks may provide increased degrees of freedom in the design of viscoelastic hydrogels with accelerated stress relaxation rates due to their strain-sensitive rheology which can be tuned via interparticle interactions. Here, we investigate the stress relaxation of colloidal hydrogels from gelatin nanoparticles in comparison to physical gelatin hydrogels and explore the particle interactions that govern stress relaxation. Colloidal and physical gelatin hydrogels exhibit comparable rheology at small deformations, but colloidal hydrogels fluidize beyond a critical strain while physical gels remain primarily elastic independent of strain. This fluidization facilitates fast exponential stress relaxation in colloidal gels at strain levels that correspond to strains exerted by cells embedded in physiological extracellular matrices (10-50%). Increased attractive particle interactions result in a higher critical strain and slower stress relaxation in colloidal gels. In physical gels, stress relaxation is slower and mostly independent of strain. Hence, colloidal hydrogels offer the possibility to modulate viscoelasticity via interparticle interactions and obtain fast stress relaxation rates at strains relevant for cell activity. These beneficial features render colloidal hydrogels promising alternatives to conventional monolithic hydrogels for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: In the endeavor to design biomaterials that favor cell activity, research has long focused on biochemical cues. Recently, the time-, stress-, and strain-dependent mechanical properties, i.e. viscoelasticity, of biomaterials has been recognized as important factor that dictates cell fate. We herein present the viscoelastic stress relaxation of colloidal hydrogels assembled from gelatin nanoparticles, which show a strain-dependent fluidization at strains relevant for cell activity, in contrast to many commonly used monolithic hydrogels with primarily elastic behavior.


Subject(s)
Gelatin , Nanoparticles , Biocompatible Materials , Hydrogels/pharmacology , Tissue Engineering
18.
Tissue Eng Part B Rev ; 28(6): 1169-1179, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34915758

ABSTRACT

The large number of animal models used in spinal cord injury (SCI) research complicates the objective selection of the most appropriate model to investigate the efficacy of biomaterial-based therapies. This systematic review aims to identify a list of relevant animal models of SCI by evaluating the confirmation of SCI and animal survival in all published SCI models used in biomaterials research up until April 2021. A search in PubMed and Embase based on "spinal cord injury," "animal models," and "biomaterials" yielded 4606 papers, 393 of which were further evaluated. A total of 404 individual animal experiments were identified based on type of SCI, level of SCI, and the sex, species, and strain of the animals used. Finally, a total of 149 unique animal models were comparatively evaluated, which led to the generation of an evidence-based list of well-documented mid-thoracic rat models of SCI. These models were used most often, clearly confirmed SCI, and had relatively high survival rates, and therefore could serve as a future starting point for studying novel biomaterial-based therapies for SCI. Furthermore, the review discusses (1) the possible risk of bias in SCI animal models, (2) the difficulty in replication of such experiments due to frequent poor reporting of the methods and results, and (3) the clinical relevance of the currently utilized models. Systematic review registration: The study was prospectively registered in PROSPERO, registration number CRD42019141162. Impact statement Studies on biomaterial-based therapies within the field of spinal cord injury (SCI) research show a large inconsistency concerning the selection of animal models. This review goes beyond summarizing the existing gaps between experimental and clinical SCI by systematically evaluating all animal models used within this field. The models identified by this work were used most often, clearly confirmed SCI, and had a relatively high survival rate. This evidence-based list of well-documented animal models will serve as a practical guideline in future research on innovative biomaterial-based therapies for SCI.


Subject(s)
Biocompatible Materials , Spinal Cord Injuries , Animals , Rats , Biocompatible Materials/therapeutic use , Spinal Cord Injuries/therapy , Disease Models, Animal
19.
Pharmaceutics ; 13(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34834361

ABSTRACT

To investigate the delivery of next-generation macromolecular drugs, such as engineered proteins and mRNA-containing nanoparticles, there is an increasing push towards the use of physiologically relevant disease models that incorporate human cells and do not face ethical dilemmas associated with animal use. Here, we illustrate the versatility and ease of use of a microfluidic platform for studying drug delivery using high-resolution microscopy in 3D. Using this microfluidic platform, we successfully demonstrate the specific targeting of carbonic anhydrase IX (CAIX) on cells overexpressing the protein in a tumor-mimicking chip system using affibodies, with CAIX-negative cells and non-binding affibodies as controls. Furthermore, we demonstrate this system's feasibility for testing mRNA-containing biomaterials designed to regenerate bone defects. To this end, peptide- and lipid-based mRNA formulations were successfully mixed with colloidal gelatin in microfluidic devices, while translational activity was studied by the expression of a green fluorescent protein. This microfluidic platform enables the testing of mRNA delivery from colloidal biomaterials of relatively high densities, which represents a first important step towards a bone-on-a-chip platform. Collectively, by illustrating the ease of adaptation of our microfluidic platform towards use in distinct applications, we show that our microfluidic chip represents a powerful and flexible way to investigate drug delivery in 3D disease-mimicking culture systems that recapitulate key parameters associated with in vivo drug application.

20.
Macromol Biosci ; 21(12): e2100257, 2021 12.
Article in English | MEDLINE | ID: mdl-34569720

ABSTRACT

The development of bone glues based on bone-adhesive hydrogels to allow for facile bone fracture fixation remains a major challenge. Herein, dual crosslinked hydrogels that combine tunable stiffness, ductility, and self-healing capacity are successfully synthesized. The resulting double network hydrogel is formed by chemical crosslinking of N-hydroxysuccinimide-functionalized poly(2-oxazoline)s(POx-NHS)"?> with amine-functionalized poly(2-oxazoline)s, and physical crosslinking of alendronate-functionalized poly(2-oxazoline)s (POx-Ale) with calcium ions in solution. The use of an excess of alendronate-functionalized POx-Ale polymers also ensures affinity toward calcium cations in the mineral phase of bone, thereby rendering these hydrogels adhesive to bone. The mechanical and bone-adhesive properties of these novel hydrogels are superior to commercially available fibrin sealants. Moreover, hydrogels retain their bone-adhesive properties under wet conditions. Although the dual crosslinked hydrogels swell considerably, they are stable upon immersion in phosphate-buffered saline (up to 12 d) and even in ethylenediaminetetraacetic acid solution. The enhanced mechanical and bone-adhesive properties of these hydrogels, as well as their in vitro stability, indicate that they have much application potential as bone-adhesive glues.


Subject(s)
Hydrogels/chemistry , Oxazoles/chemistry , Tissue Adhesives/chemistry , Bone and Bones , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...