Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Front Neurosci ; 17: 1289013, 2023.
Article in English | MEDLINE | ID: mdl-38027471

ABSTRACT

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic forms (NS-FASD). The neuroanatomical consequences of prenatal alcohol exposure are mainly the reduction in brain size, but also focal abnormalities such as those of the corpus callosum (CC). We previously showed a narrowing of the CC for brain size, using manual measurement and its usefulness to improve diagnostic certainty. Our aim was to automate these measurements of the CC and identify more recurrent abnormalities in FAS subjects, independently of brain size reduction. Methods: We developed a fast, automated, and normalization-free method based on spectral analysis to generate thicknesses of the CC continuously and at singular points (genu, body, isthmus, and splenium), and its length (LCC). We applied it on midsagittal section of the CC extracted from T1-anatomical brain MRI of 89 subjects with FASD (52 FAS, 37 NS-FASD) and 126 with typically development (6-20 y-o). After adjusting for batch effect, we compared the mean profiles and thicknesses of the singular points across the 3 groups. For each parameter, we established variations with age (growth charts) and brain size in the control group (scaling charts), then identified participants with abnormal measurements (<10th percentile). Results: We confirmed the slimming of the posterior half of the CC in both FASD groups, and of the genu section in the FAS group, compared to the control group. We found a significant group effect for the LCC, genu, median body, isthmus, and splenium thicknesses (p < 0.05). We described a body hump whose morphology did not differ between groups. According to the growth charts, there was an excess of FASD subjects with abnormal LCC and isthmus, and of FAS subjects with abnormal genu and splenium. According to the scaling charts, this excess remained only for LCC, isthmus and splenium, undersized for brain size. Conclusion: We characterized size-independent anomalies of the posterior part of the CC in FASD, with an automated method, confirming and extending our previous study. Our new tool brings the use of a neuroanatomical criterion including CC damage closer to clinical practice. Our results suggest that an FAS signature identified in NS-FASD, could improve diagnosis specificity.

2.
Front Neurosci ; 17: 1188367, 2023.
Article in English | MEDLINE | ID: mdl-37360177

ABSTRACT

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic non-specific forms (NS-FASD) that are still underdiagnosed and could benefit from new neuroanatomical markers. The main neuroanatomical manifestation of prenatal alcohol exposure on developmental toxicity is the reduction in brain size, but repeated imaging observations have long driven the attention on the corpus callosum (CC), without being all convergent. Our study proposed a new segmentation of the CC that relies on both a sulci-based cortical segmentation and the "hemispherotopic" organization of the transcallosal fibers. Methods: We collected a monocentric series of 37 subjects with FAS, 28 with NS-FASD, and 38 with typical development (6 to 25 years old) using brain MRI (1.5T). Associating T1- and diffusion-weighted imaging, we projected a sulci-based cortical segmentation of the hemispheres on the midsagittal section of the CC, resulting in seven homologous anterior-posterior parcels (frontopolar, anterior and posterior prefrontal, precentral, postcentral, parietal, and occipital). We measured the effect of FASD on the area of callosal and cortical parcels by considering age, sex, and brain size as linear covariates. The surface proportion of the corresponding cortical parcel was introduced as an additional covariate. We performed a normative analysis to identify subjects with an abnormally small parcel. Results: All callosal and cortical parcels were smaller in the FASD group compared with controls. When accounting for age, sex, and brain size, only the postcentral (η2 = 6.5%, pFDR = 0.032) callosal parcel and % of the cortical parcel (η2 = 8.9%, pFDR = 0.007) were still smaller. Adding the surface proportion (%) of the corresponding cortical parcel to the model, only the occipital parcel was persistently reduced in the FASD group (η2 = 5.7%, pFDR = 0.014). In the normative analysis, we found an excess of subjects with FASD with abnormally small precentral and postcentral (peri-isthmic) and posterior-splenial parcels (pFDR < 0.05). Conclusion: The objective sulcal and connectivity-based method of CC parcellation proved to be useful not only in confirming posterior-splenial damage in FASD but also in the narrowing of the peri-isthmic region strongly associated with a specific size reduction in the corresponding postcentral cortical region (postcentral gyrus). The normative analysis showed that this type of callosal segmentation could provide a clinically relevant neuroanatomical endophenotype, even in NS-FASD.

3.
J Neurol Sci ; 441: 120370, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35952454

ABSTRACT

BACKGROUND: ADC (apparent coefficient diffusion) value has been known to predict hemorrhage transformation (HT) after thrombolysis and recently, after mechanical thrombectomy (MT). We aimed to evaluate that utility separately in basal ganglia and superficial territory. We used HT occurrence with or without NIHSS change as primary outcome measures. METHODS: This single-center retrospective study included consecutive stroke patients receiving MT for internal carotid artery (ICA) or middle cerebral artery (M1 or M2) occlusion. In patient with or without HT, using the Heidelberg Bleeding Classification, on follow-up CT scan at 24-48 h, we assessed the ADC value separately in basal ganglia and superficial territory on MRI before MT to search for the correlation. Multivariable analysis was performed using variables with significant differences between the HT group and non-HT group. RESULTS: One hundred seventeen patients were included in the final analysis. HT distribution was as follows: 9 patients (7.69%) HI1 or 2; 14 patients (11.97%) PH1; 21 patients (17.95%) PH2; 29 patients (24.79%) subarachnoid hemorrhage; and 21 patients (17.95%) symptomatic intracranial hemorrhage (sICH). Mean ADC minimal value in basal ganglia in the HT group was significantly lower than in the non-HT group (377.6 × 10-6 mm2/s [± 52.4] vs 413.3 × 10-6 mm2/s [± 72.5]; p = 0.0229) with an area under the curve (AUC) of 0.6622 (95% CI: 0.5-0.8; p = 0.014). MRI-MT time was significantly longer in the HT group (p = 0.0002), but there was no association between ADC value and onset-MRI or MRI-MT times (Spearman's coefficients <0.7, p > 0.05). Glycemia at admission (>1.5 g/L) (OR = 4.2; 95% CI [1.611; 10.961]) and carotid occlusion (OR = 2.835; 95% CI [1.134; 7.091]) were independently associated with HT. CONCLUSIONS: ADC value in basal ganglia, unlike brain superficial territory, are correlated to HT risk after MT.


Subject(s)
Brain Ischemia , Stroke , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Humans , Intracranial Hemorrhages/diagnostic imaging , Intracranial Hemorrhages/etiology , Middle Cerebral Artery , Retrospective Studies , Stroke/diagnostic imaging , Stroke/etiology , Stroke/surgery , Thrombectomy/adverse effects , Treatment Outcome
4.
Ann Phys Rehabil Med ; 65(6): 101599, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34718191

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) lesions are known to evolve over time, but the duration and consequences of cerebral remodelling are unclear. Degenerative mechanisms occurring in the chronic phase after TBI could constitute "tertiary" lesions related to the neurological outcome. OBJECTIVE: The objective of this prospective study of severe TBI was to longitudinally evaluate the volume of white and grey matter structures and white matter integrity with 2 time-point multimodal MRI. METHODS: Longitudinal MRI follow-up was obtained for 11 healthy controls (HCs) and 22 individuals with TBI (mean [SD] 60 [15] months after injury) along with neuropsychological assessments. TBI individuals were classified in the "favourable" recovery group (Glasgow Outcome Scale Extended [GOSE] 6-8) and "unfavourable" recovery group (GOSE 3-5) at 5 years. Variation in brain volumes (3D T1-weighted image) and white matter integrity (diffusion tensor imaging [DTI]) were quantitatively assessed over time and used to predict neurological outcome. RESULTS: TBI individuals showed a marked decrease in volumes of whole white matter (median -11.4% [interquartile range -5.8; -14.6]; p < 0.001) and deep grey nuclear structures (-17.1% [-10.6; -20.5]; p < 0.001). HCs did not show any significant change over the same time period. Median volumetric loss in several brain regions was higher with GOSE 3-5 than 6-8. These lesions were associated with lower fractional anisotropy and higher mean diffusivity at baseline. Volumetric variations were positively correlated with normalized fractional anisotropy and negatively with normalized mean diffusivity at baseline and follow-up. A computed predictive model with baseline DTI showed good accuracy to predict neurological outcome (area under the receiver operating characteristic curve 0.82 [95% confidence interval 0.81-0.83]) CONCLUSIONS: We characterised the striking atrophy of deep brain structures after severe TBI. DTI imaging in the subacute phase can predict the occurrence and localization of these tertiary lesions as well as long-term neurological outcome. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00577954. Registered on October 2006.


Subject(s)
Brain Injuries, Traumatic , Diffusion Tensor Imaging , Humans , Brain/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Follow-Up Studies , Magnetic Resonance Imaging , Prospective Studies , Case-Control Studies
5.
Sci Rep ; 11(1): 7686, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833302

ABSTRACT

Abnormal cortical folding patterns, such as lissencephaly, pachygyria and polymicrogyria malformations, may be related to neurodevelopmental disorders. In this context, computational modeling is a powerful tool to provide a better understanding of the early brain folding process. Recent studies based on biomechanical modeling have shown that mechanical forces play a crucial role in the formation of cortical convolutions. However, the effect of biophysical parameters in these models remain unclear. In this paper, we investigate the effect of the cortical growth, the initial geometry and the initial cortical thickness on folding patterns. In addition, we not only use several descriptors of the folds such as the dimensionless mean curvature, the surface-based three-dimensional gyrification index and the sulcal depth, but also propose a new metric to quantify the folds orientation. The results demonstrate that the cortical growth mode does almost not affect the complexity degree of surface morphology; the variation in the initial geometry changes the folds orientation and depth, and in particular, the slenderer the shape is, the more folds along its longest axis could be seen and the deeper the sulci become. Moreover, the thinner the initial cortical thickness is, the higher the spatial frequency of the folds is, but the shallower the sulci become, which is in agreement with the previously reported effects of cortical thickness.


Subject(s)
Biomechanical Phenomena , Biophysical Phenomena , Cerebral Cortex/physiology , Cerebral Cortex/anatomy & histology , Computer Simulation , Humans
6.
Ann Clin Transl Neurol ; 8(5): 1024-1037, 2021 05.
Article in English | MEDLINE | ID: mdl-33787079

ABSTRACT

OBJECTIVE: Studies of motor outcome after Neonatal Arterial Ischemic Stroke (NAIS) often rely on lesion mapping using MRI. However, clinical measurements indicate that motor deficit can be different than what would solely be anticipated by the lesion extent and location. Because this may be explained by the cortical disconnections between motor areas due to necrosis following the stroke, the investigation of the motor network can help in the understanding of visual inspection and outcome discrepancy. In this study, we propose to examine the structural connectivity between motor areas in NAIS patients compared to healthy controls in order to define the cortical and subcortical connections that can reflect the motor outcome. METHODS: Thirty healthy controls and 32 NAIS patients with and without Cerebral Palsy (CP) underwent MRI acquisition and manual assessment. The connectome of all participants was obtained from T1-weighted and diffusion-weighted imaging. RESULTS: Significant disconnections in the lesioned and contra-lesioned hemispheres of patients were found. Furthermore, significant correlations were detected between the structural connectivity metric of specific motor areas and manuality assessed by the Box and Block Test (BBT) scores in patients. INTERPRETATION: Using the connectivity measures of these links, the BBT score can be estimated using a multiple linear regression model. In addition, the presence or not of CP can also be predicted using the KNN classification algorithm. According to our results, the structural connectome can be an asset in the estimation of gross manual dexterity and can help uncover structural changes between brain regions related to NAIS.


Subject(s)
Cerebral Arterial Diseases/pathology , Cerebral Palsy/pathology , Infant, Newborn, Diseases/pathology , Ischemic Stroke/pathology , Nerve Net/pathology , Cerebral Arterial Diseases/diagnostic imaging , Cerebral Palsy/diagnostic imaging , Child , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Female , Follow-Up Studies , Humans , Infant, Newborn , Ischemic Stroke/diagnostic imaging , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging
7.
IEEE Trans Image Process ; 30: 1453-1460, 2021.
Article in English | MEDLINE | ID: mdl-33326381

ABSTRACT

The recent definition of fractional Brownian motions on surfaces has raised the statistical issue of estimating the Hurst index characterizing these models. To deal with this open issue, we propose a method which is based on a spectral representation of surfaces built upon their Laplace-Beltrami operator. This method includes a first step where the surface supporting the motion is recovered using a mean curvature flow, and a second one where the Hurst index is estimated by linear regression on the motion spectrum. The method is evaluated on synthetic surfaces. The interest of the method is further illustrated on some fetal cortical surfaces extracted from magnetic resonance images as a means to quantify the brain complexity during the gestational age.


Subject(s)
Image Processing, Computer-Assisted/methods , Movement/physiology , Surface Properties , Algorithms , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Fetus/diagnostic imaging , Humans , Linear Models , Magnetic Resonance Imaging
8.
Med Image Anal ; 66: 101749, 2020 12.
Article in English | MEDLINE | ID: mdl-32877840

ABSTRACT

Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires new numerical tools to establish inter-subject correspondences. Here, we address this issue by taking advantage of the geometrical information carried by sulcal basins that are the local patches of surfaces surrounding each sulcal pit. Our framework consists in two phases. First, we present a new method to generate a population-specific atlas of this sulcal basins organi- zation as a fold-level parcellation of the cortical surface. Then, we address the labeling of individual sulcal pits and corresponding basins with respect to this atlas. To assess their validity, we applied these methodological advances on two different populations of healthy subjects. The first database of 137 adults allowed us to compare our method to the state-of-the-art and the second database of 209 children, aged between 0 and 18 years, illustrates the adaptability and relevance of our method in the context of pediatric data showing strong variations in cortical volume and folding.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Child , Child, Preschool , Humans , Infant , Infant, Newborn
9.
Front Hum Neurosci ; 14: 154, 2020.
Article in English | MEDLINE | ID: mdl-32410976

ABSTRACT

Functional MRI is increasingly being used in the assessment of brain activation and connectivity following stroke. Many of these studies rely on the Blood Oxygenation Level Dependent (BOLD) contrast. However, the stability, as well as the accuracy of the BOLD response to motor task in the ipsilesional hemisphere, remains ambiguous. In this work, the BOLD signal acquired from both healthy and affected hemispheres was analyzed in 7-year-old children who sustained a Neonatal Arterial Ischemic Stroke (NAIS). Accordingly, a repetitive motor task of the contralesional and the ipsilesional hands was performed by 33 patients with unilateral lesions. These patients were divided into two groups: those without cerebral palsy (NAIS), and those with cerebral palsy (CP). The BOLD signal time course was obtained from distinctly defined regions of interest (ROIs) extracted from the functional activation maps of 30 healthy controls with similar age and demographic characteristics as the patients. An ROI covering both the primary motor cortex (M1) and the primary somatosensory cortex (S1) was also tested. Compared with controls, NAIS patients without CP had similar BOLD amplitude variation for both the contralesional and the ipsilesional hand movements. However, in the case of NAIS patients with CP, a significant difference in the averaged BOLD amplitude was found between the healthy and affected hemisphere. In both cases, no progressive attenuation of the BOLD signal amplitude was observed throughout the task epochs. Besides, results also showed a correlation between the BOLD signal percentage variation of the lesioned hemisphere and the dexterity level. These findings suggest that for patients who sustained a NAIS with no extensive permanent motor impairment, BOLD signal-based data analysis can be a valuable tool for the evaluation of functional brain networks.

10.
Front Neurol ; 10: 753, 2019.
Article in English | MEDLINE | ID: mdl-31354616

ABSTRACT

CADASIL is a monogenic small vessel disease characterized by the accumulation of brain tissue lesions of microvascular origin leading to strokes and cognitive deficits. Both cortical and parenchymal alterations have been described using various MRI markers. However, relationships between cortical and subcortical alterations remain largely unexplored. While brain atrophy is a preponderant feature in cerebral small vessel disease, recent results in CADASIL suggest slightly larger brain volumes and increased white matter water content at early stages of the disease by comparison to controls. We hypothesized in this study that increased water content in gyral white matter balances expected brain atrophy. Direct white matter volume computation is challenging in these patients given widespread subcortical alterations. Instead, our approach was that a gyral white matter swelling would translate into a modification of the shape of cortical gyri. Our goal was then to assess the relationship between subcortical lesions and possible alteration of the cortex shape. More specifically, aims of this work were to assess 1) morphometric differences of the cortex shape between CADASIL patients and controls 2) the relationship between the cortex shape and the volume of white matter hyperintensities (WMH), a reflect of white matter alterations. Twenty-one patients at the early stage of the disease and 28 age- and sex-matched controls were included. Cortical surfaces were reconstructed from 3D-T1-weighted images. Folding power assessed from spectral analysis of gyrification and cortical morphometry using curvedness and shape index were computed as proxies of the cortex shape. Influence of segmentation errors were evaluated through the simulation of WMH in controls. As a result, patients had larger folding power and curvedness compared to controls. They also presented lower shape indices both related to sulci and gyri. In patients, the volume of WMH was associated with decreased gyral shape index. These results suggest that the cortex shape of CADASIL patients is different compared to controls and that the enlargement of gyri is related to the extent of white matter alterations. The study of the cortex shape might be another way to evaluate subcortical swelling or atrophy in various neurological disorders.

11.
Dev Neurobiol ; 79(4): 303-316, 2019 04.
Article in English | MEDLINE | ID: mdl-31004467

ABSTRACT

Although neonatal arterial ischemic stroke is now well-studied, its complex consequences on long-term cortical brain development has not yet been solved. In order to understand the brain development after focal early brain lesion, brain morphometry needs to be evaluated using structural parameters. In this work, our aim was to study and analyze the changes in morphometry of ipsi- and contralesional hemispheres in seven-year-old children following neonatal stroke. Therefore, we used surface-based morphometry in order to examine the cortical thickness, surface area, cortical volume, and local gyrification index in two groups of children that suffered from neonatal stroke in the left (n = 19) and right hemispheres (n = 15) and a group of healthy controls (n = 30). Reduced cortical thickness, surface area, and cortical volumes were observed in the ipsilesional hemispheres for both groups in comparison with controls. For the group with left-sided lesions, higher gyrification of the contralesional hemisphere was observed primarily in the occipital region along with higher surface area and cortical volume. As for the group with right-sided lesions, higher gyrification was detected in two separate clusters also in the occipital lobe of the contralesional hemisphere, without a significant change in cortical thickness, surface area, or cortical volume. This is the first time that alterations of structural parameters are detected in the "healthy" hemisphere after unilateral neonatal stroke indicative of a compensatory phenomenon. Moreover, findings presented in this work suggest that lesion lateralization might have an influence on brain development and maturation.


Subject(s)
Cerebral Cortex/diagnostic imaging , Stroke/diagnostic imaging , Cerebral Cortex/growth & development , Child , Cohort Studies , Female , Humans , Image Processing, Computer-Assisted , Infant, Newborn , Magnetic Resonance Imaging , Male , Neuronal Plasticity , Organ Size
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 146-149, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31945865

ABSTRACT

Abnormal cortical folding patterns may be related to neurodevelopmental disorders such as lissencephaly and polymicrogyria. In this context, computational modeling is a powerful tool to provide a better understanding of the early brain folding process. Recent studies based on biomechanical modeling have shown that mechanical forces play a crucial role in the formation of cortical convolutions. However, the correlation between simulation results and biological facts, and the effect of physical parameters in these models remain unclear. In this paper, we propose a new brain longitudinal length growth model to improve brain model growth. In addition, we investigate the effect of the initial cortical thickness on folding patterns, quantifying the folds by the surface-based three-dimensional gyrification index and a spectral analysis of gyrification. The results tend to show that the use of such biomechanical models could highlight the links between neurodevelopmental diseases and physical parameters.


Subject(s)
Brain , Magnetic Resonance Imaging , Models, Theoretical , Physical Examination
13.
Neuroimage ; 185: 934-946, 2019 01 15.
Article in English | MEDLINE | ID: mdl-29522888

ABSTRACT

In the human brain, the appearance of cortical sulci is a complex process that takes place mostly during the second half of pregnancy, with a relatively stable temporal sequence across individuals. Since deviant gyrification patterns have been observed in many neurodevelopmental disorders, mapping cortical development in vivo from the early stages on is an essential step to uncover new markers for diagnosis or prognosis. Recently this has been made possible by MRI combined with post-processing tools, but the reported results are still fragmented. Here we aimed to characterize the typical folding progression ex utero from the pre- to the post-term period, by considering 58 healthy preterm and full-term newborns and infants imaged between 27 and 62 weeks of post-menstrual age. Using a method of spectral analysis of gyrification (SPANGY), we detailed the spatial-frequency structure of cortical patterns in a quantitative way. The modeling of developmental trajectories revealed three successive waves that might correspond to primary, secondary and tertiary folding. Some deviations were further detected in 10 premature infants without apparent neurological impairment and imaged at term equivalent age, suggesting that our approach is sensitive enough to highlight the subtle impact of preterm birth and extra-uterine life on folding.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Neuroimaging/methods , Cerebral Cortex/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Male
14.
Front Neuroanat ; 12: 98, 2018.
Article in English | MEDLINE | ID: mdl-30498435

ABSTRACT

The hippocampus and the adjacent perirhinal, entorhinal, temporopolar, and parahippocampal cortices are interconnected in a hierarchical MTL system crucial for memory processes. A probabilistic description of the anatomical location and spatial variability of MTL cortices in the child and adolescent brain would help to assess structure-function relationships. The rhinal sulcus (RS) and the collateral sulcus (CS) that border MTL cortices and influence their morphology have never been described in these populations. In this study, we identified the aforementioned structures on magnetic resonance images of 38 healthy subjects aged 7-17 years old. Relative to sulcal morphometry in the MTL, we showed RS-CS conformation is an additional factor of variability in the MTL that is not explained by other variables such as age, sex and brain volume; with an innovative method using permutation testing of the extrema of structures of interest, we showed that RS-SC conformation was not associated with differences of location of MTL sulci. Relative to probabilistic maps, we offered for the first time a systematic mapping of MTL structures in children and adolescent, mapping all the structures of the MTL system while taking sulcal morphology into account. Our results, with the probabilistic maps described here being freely available for download, will help to understand the anatomy of this region and help functional and clinical studies to accurately test structure-function hypotheses in the MTL during development. Free access to MTL pediatric atlas: http://neurovault.org/collections/2381/.

15.
J Pharm Biomed Anal ; 161: 414-424, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30216790

ABSTRACT

Supercritical Fluid Chromatography (SFC) has known a strong regain of interest for the last 10 years, especially in the field of pharmaceutical analysis. Besides the development and validation of the SFC method in one individual laboratory, it is also important to demonstrate its applicability and transferability to various laboratories around the world. Therefore, an inter-laboratory study was conducted and published for the first time in SFC, to assess method reproducibility, and evaluate whether this chromatographic technique could become a reference method for quality control (QC) laboratories. This study involved 19 participating laboratories from 4 continents and 9 different countries. It included 5 academic groups, 3 demonstration laboratories at analytical instrument companies, 10 pharmaceutical companies and 1 food company. In the initial analysis of the study results, consistencies within- and between-laboratories were deeply examined. In the subsequent analysis, the method reproducibility was estimated taking into account variances in replicates, between-days and between-laboratories. The results obtained were compared with the literature values for liquid chromatography (LC) in the context of impurities determination. Repeatability and reproducibility variances were found to be similar or better than those described for LC methods, and highlighted the adequacy of the SFC method for QC analyses. The results demonstrated the excellent and robust quantitative performance of SFC. Consequently, this complementary technique is recognized on equal merit to other chromatographic techniques.


Subject(s)
Chromatography, Supercritical Fluid/standards , Drug Contamination/prevention & control , International Cooperation , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Chromatography, Supercritical Fluid/methods , Quality Control , Reproducibility of Results
16.
Front Neurosci ; 12: 354, 2018.
Article in English | MEDLINE | ID: mdl-29904338

ABSTRACT

Understanding the link between structure, function and development in the brain is a key topic in neuroimaging that benefits from the tremendous progress of multi-modal MRI and its computational analysis. It implies, inter alia, to be able to parcellate the brain volume or cortical surface into biologically relevant regions. These parcellations may be inferred from existing atlases (e.g., Desikan) or sets of rules, as would do a neuroanatomist for lobes, but also directly driven from the data (e.g., functional or structural connectivity) with minimum a priori. In the present work, we aimed at using the intrinsic geometric information contained in the eigenfunctions of Laplace-Beltrami Operator to obtain parcellations of the cortical surface based only on its description by triangular meshes. We proposed a framework adapted from spectral clustering, which is general in scope and suitable for the co-parcellation of a group of subjects. We applied it to a dataset of 62 adults, optimized it and revealed a striking agreement between parcels produced by this unsupervised clustering and Freesurfer lobes (Desikan atlas), which cannot be explained by chance. Constituting the first reported attempt of spectral-based fully unsupervised segmentation of neuroanatomical regions such as lobes, spectral analysis of lobes (Spanol) could conveniently be fitted into a multimodal pipeline to ease, optimize or speed-up lobar or sub-lobar segmentation. In addition, we showed promising results of Spanol on smoother brains and notably on a dataset of 15 fetuses, with an interest for both the understanding of cortical ontogeny and the applicative field of perinatal computational neuroanatomy.

17.
IEEE Trans Med Imaging ; 36(3): 838-848, 2017 03.
Article in English | MEDLINE | ID: mdl-27913336

ABSTRACT

Gyrification index (GI) is an appropriate measure to quantify the complexity of the cerebral cortex. There is, however, no universal agreement on the notion of surface complexity and there are various methods in literature that evaluate different aspects of cortical folding. In this paper, we give two intuitive interpretations on folding quantification based on the magnitude and variation of the mean curvature of the cortical surface. We then present a local spectral analysis of the mean curvature to introduce two local gyrification indices that satisfy our interpretations. For this purpose, the graph windowed Fourier transform is extended to the framework of surfaces discretized with triangular meshes. An adaptive window function is also proposed to deal with the intersubject cortical size variability. The intrinsic nature of the method allows us to compute the degree of folding at different spatial scales. Our experiments show that while more classical surface area-based GIs may fail at differentiating deep folds from very convoluted ones, our spectral GIs overcome this issue. The method is applied to the cortical surfaces of 124 healthy adult subjects of OASIS database and average gyrification maps are computed and compared with other GI definitions. In order to illustrate the capacity of our method to capture and quantify important aspects of gyrification, we study the relationship between brain volume and cortical complexity, and design a scaling analysis with a power law model. Results indicate an allometric relation and confirm the well-known observations that larger brains are more folded. We also perform the scaling analysis at the vertex level to investigate how the degree of folding varies locally with the brain volume. Results reveal that in our healthy adult brain database, cortical regions which are the least folded on average show an increased folding complexity when brain size increases.


Subject(s)
Cerebral Cortex/diagnostic imaging , Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Humans , Magnetic Resonance Imaging , Surface Properties
18.
Sensors (Basel) ; 16(6)2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27258288

ABSTRACT

This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view.

19.
Cereb Cortex ; 26(7): 3023-35, 2016 07.
Article in English | MEDLINE | ID: mdl-26045567

ABSTRACT

Magnetic resonance imaging has proved to be suitable and efficient for in vivo investigation of the early process of brain gyrification in fetuses and preterm newborns but the question remains as to whether cortical-related measurements derived from both cases are comparable or not. Indeed, the developmental folding trajectories drawn up from both populations have not been compared so far, neither from cross-sectional nor from longitudinal datasets. The present study aimed to compare features of cortical folding between healthy fetuses and early imaged preterm newborns on a cross-sectional basis, over a developmental period critical for the folding process (21-36 weeks of gestational age [GA]). A particular attention was carried out to reduce the methodological biases between the 2 populations. To provide an accurate group comparison, several global parameters characterizing the cortical morphometry were derived. In both groups, those metrics provided good proxies for the dramatic brain growth and cortical folding over this developmental period. Except for the cortical volume and the rate of sulci appearance, they depicted different trajectories in both groups suggesting that the transition from into ex utero has a visible impact on cortical morphology that is at least dependent on the GA at birth in preterm newborns.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Infant, Premature/growth & development , Cross-Sectional Studies , Follow-Up Studies , Humans , Imaging, Three-Dimensional , Infant, Newborn , Magnetic Resonance Imaging , Organ Size , Prenatal Diagnosis , Retrospective Studies
20.
Front Hum Neurosci ; 8: 338, 2014.
Article in English | MEDLINE | ID: mdl-24904377

ABSTRACT

Distributed cortical solutions of magnetoencephalography (MEG) and electroencephalography (EEG) exhibit complex spatial and temporal dynamics. The extraction of patterns of interest and dynamic features from these cortical signals has so far relied on the expertise of investigators. There is a definite need in both clinical and neuroscience research for a method that will extract critical features from high-dimensional neuroimaging data in an automatic fashion. We have previously demonstrated the use of optical flow techniques for evaluating the kinematic properties of motion field projected on non-flat manifolds like in a cortical surface. We have further extended this framework to automatically detect features in the optical flow vector field by using the modified and extended 2-Riemannian Helmholtz-Hodge decomposition (HHD). Here, we applied these mathematical models on simulation and MEG data recorded from a healthy individual during a somatosensory experiment and an epilepsy pediatric patient during sleep. We tested whether our technique can automatically extract salient dynamical features of cortical activity. Simulation results indicated that we can precisely reproduce the simulated cortical dynamics with HHD; encode them in sparse features and represent the propagation of brain activity between distinct cortical areas. Using HHD, we decoded the somatosensory N20 component into two HHD features and represented the dynamics of brain activity as a traveling source between two primary somatosensory regions. In the epilepsy patient, we displayed the propagation of the epileptic activity around the margins of a brain lesion. Our findings indicate that HHD measures computed from cortical dynamics can: (i) quantitatively access the cortical dynamics in both healthy and disease brain in terms of sparse features and dynamic brain activity propagation between distinct cortical areas, and (ii) facilitate a reproducible, automated analysis of experimental and clinical MEG/EEG source imaging data.

SELECTION OF CITATIONS
SEARCH DETAIL
...