Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Redox Biol ; 68: 102962, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38029455

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Subject(s)
Ferroptosis , Pancreatic Neoplasms , Selenium , Humans , Pancreas , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Lipid Peroxidation , Pancreatic Neoplasms
2.
Nat Commun ; 14(1): 5521, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684224

ABSTRACT

The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.


Subject(s)
Cyclic AMP , Histones , Histones/genetics , Cell Nucleus , Nuclear Proteins , Cyclic AMP-Dependent Protein Kinases
3.
Cancers (Basel) ; 14(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35884372

ABSTRACT

(1) Background: Store-operated Ca2+ entry (SOCE) drives the cytotoxic activity of cytotoxic T lymphocytes (CTLs) against cancer cells. However, SOCE can be enhanced in cancer cells due to an increase in the expression and/or function of its underlying molecular components, i.e., STIM1 and Orai1. Herein, we evaluated the SOCE expression and function in tumour-infiltrating lymphocytes (TILs) from metastatic colorectal cancer (mCRC) patients. (2) Methods: Functional studies were conducted in TILs expanded ex vivo from CRC liver metastases. Peripheral blood T cells from healthy donors (hPBTs) and mCRC patients (cPBTs) were used as controls. (3) Results: SOCE amplitude is enhanced in TILs compared to hPBTs and cPBTs, but the STIM1 protein is only up-regulated in TILs. Pharmacological manipulation showed that the increase in SOCE mainly depends on tonic modulation by diacylglycerol kinase, which prevents the protein kinase C-dependent inhibition of SOCE activity. The larger SOCE caused a stronger Ca2+ response to T-cell receptor stimulation by autologous mCRC cells. Reducing Ca2+ influx with BTP-2 during target cell killing significantly increases cytotoxic activity at low target:effector ratios. (4) Conclusions: SOCE is enhanced in ex vivo-expanded TILs deriving from mCRC patients but decreasing Ca2+ influx with BTP-2 increases cytotoxic activity at a low TIL density.

4.
Biomolecules ; 12(5)2022 04 25.
Article in English | MEDLINE | ID: mdl-35625560

ABSTRACT

AQP4ex is a recently discovered isoform of AQP4 generated by a translational readthrough mechanism. It is strongly expressed at the astrocyte perivascular endfeet as a component of the supramolecular membrane complex, commonly called orthogonal array of particles (OAP), together with the canonical isoforms M1 and M23 of AQP4. Previous site-directed mutagenesis experiments suggested the potential role of serine331 and serine335, located in the extended peptide of AQP4ex, in water channel activity by phosphorylation. In the present study we evaluated the effective phosphorylation of human AQP4ex. A small scale bioinformatic analysis indicated that only Ser335 is conserved in human, mouse and rat AQP4ex. The phosphorylation site of Ser335 was assessed through generation of phospho-specific antibodies in rabbits. Antibody specificity was first evaluated in binding phosphorylated peptide versus its unphosphorylated analog by ELISA, which was further confirmed by site-directed mutagenesis experiments. Western blot and immunofluorescence experiments revealed strong expression of phosphorylated AQP4ex (p-AQP4ex) in human brain and localization at the perivascular astrocyte endfeet in supramolecular assemblies identified by BN/PAGE experiments. All together, these data reveal, for the first time, the existence of a phosphorylated form of AQP4, at Ser335 in the extended sequence exclusive of AQP4ex. Therefore, we anticipate an important physiological role of p-AQP4ex in human brain water homeostasis.


Subject(s)
Aquaporin 4/metabolism , Astrocytes , Animals , Aquaporin 4/genetics , Astrocytes/metabolism , Brain/metabolism , Humans , Mice , Protein Isoforms/metabolism , Rabbits , Rats , Serine/metabolism
5.
Hypertension ; 79(7): 1374-1384, 2022 07.
Article in English | MEDLINE | ID: mdl-35506379

ABSTRACT

BACKGROUND: Disruption of cyclic nucleotide signaling in sympathetic postganglionic neurons contributes to impaired intracellular calcium handling (Ca2+) and the development of dysautonomia during the early stages of hypertension, although how this occurs is poorly understood. Emerging evidence supports the uncoupling of signalosomes in distinct cellular compartments involving cyclic nucleotide-sensitive PDEs (phosphodiesterases), which may underpin the autonomic phenotype in stellate neurons. METHODS: Using a combination of single-cell RNA sequencing together with Forster resonance energy transfer-based sensors to monitor cyclic adenosine 3',5'-monophosphate, PKA (protein kinase A)-dependent phosphorylation and cGMP (cyclic guanosine 3',5'-monophosphate), we tested the hypothesis that dysregulation occurs in a sub-family of PDEs in the cytosol and outer mitochondrial membrane of neurons from the stellate ganglion. RESULTS: PDE2A, 6D, 7A, 9A genes were highly expressed in young Wistar neurons and also conserved in neurons from spontaneously hypertensive rats (SHRs). In stellate neurons from prehypertensive SHRs, we found the levels of cyclic adenosine 3',5'-monophosphate and cGMP at the outer mitochondrial membrane were decreased compared with normal neurons. The reduced cyclic adenosine 3',5'-monophosphate response was due to the hydrolytic activity of overexpressed PDE2A2 located at the mitochondria. Normal cyclic adenosine 3',5'-monophosphate levels were re-established by inhibition of PDE2A. There was also a greater PKA-dependent phosphorylation in the cytosol and at the outer mitochondrial membrane in spontaneously hypertensive rat neurons, where this response was regulated by protein phosphatases. The cGMP response was only restored by inhibition of PDE6. CONCLUSIONS: When taken together, these results suggest that site-specific inhibition of PDE2A and PDE6D at the outer mitochondrial membrane may provide a therapeutic target to ameliorate cardiac sympathetic impairment during the onset of hypertension.


Subject(s)
Hypertension , Mitochondrial Membranes , Adenosine , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Mitochondrial Membranes/metabolism , Neurons/metabolism , Nucleotides, Cyclic , Rats , Rats, Inbred SHR , Rats, Wistar
6.
Endocr Relat Cancer ; 29(5): 273-284, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35298396

ABSTRACT

The improper expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) and the GIP/GIPR axis activation has been increasingly recognized in endocrine tumors, with a potential diagnostic and prognostic value. A high tumor-to-normal tissue ratio (T/N ratio) of GIPR was reported both in humans' and in rats' medullary thyroid cancer (MTC), suggesting a direct link between the neoplastic transformation and the mechanism of receptor overexpression. In this study, we evaluated the potential diagnostic and prognostic significance of GIPR expression in a large cohort of MTC patients by correlating GIPR mRNA steady-state levels to clinical phenotypes. The molecular effect of GIP/GIPR axis stimulation in MTC-derived cells was also determined. We detected GIPR expression in ~80% of tumor specimens, especially in sporadic, larger, advanced-stage cancers with higher Ki-67 values. GIPR stimulation induced cAMP elevation in MTC-derived cells and a small but significant fluctuation in Ca2+, both likely associated with increased calcitonin secretion. On the contrary, the effects on PI3K-Akt and MAPK-ERK1/2 signaling pathways were marginal. To conclude, our data confirm the high T/N GIPR ratio in MTC tumors and suggest that it may represent an index for the degree of advancement of the malignant process. We have also observed a functional coupling between GIP/GIPR axis and calcitonin secretion in MTC models. However, the molecular mechanisms underlying this process and the possible implication of GIP/GIPR axis activation in MTC diagnosis and prognosis need further evaluation.


Subject(s)
Gastric Inhibitory Polypeptide , Thyroid Neoplasms , Calcitonin , Carcinoma, Neuroendocrine , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Humans , Phosphatidylinositol 3-Kinases , Receptors, Gastrointestinal Hormone , Thyroid Neoplasms/genetics
7.
Small ; 17(24): e2007959, 2021 06.
Article in English | MEDLINE | ID: mdl-33969618

ABSTRACT

Artificial cells (ACs) aim to mimic selected structural and functional features of mammalian cells. In this context, energy generation is an important challenge to be addressed when self-sustained systems are desired. Here, mitochondria isolated from HepG2 cells are employed as natural subunits that facilitate chemically driven adenosine triphosphate (ATP) synthesis. The successful mitochondria isolation is confirmed by monitoring the preserved inner membrane potential, the respiration, and the ATP production ability. The encapsulation of the isolated mitochondria in gelatin-based hydrogels results in similar initial ATP production compared to mitochondria in solution with a sustained ATP production over 24 h. Furthermore, luciferase is coencapsulated with the mitochondria in gelatin-based particles to create ACs and employ the in situ produced ATP to drive the catalytic conversion of d-luciferin. The coencapsulation of luciferase-loaded liposomes with mitochondria in gelatin-based hydrogels is additionally explored where the encapsulation of mitochondria and liposomes resulted in clustering effects that are likely contributing to the functional performance of the active entities. Taken together, mitochondria show potential in cell mimicry to facilitate energy-dependent processes.


Subject(s)
Adenosine Triphosphate , Artificial Cells , Animals , Hydrogels , Liposomes , Mitochondria
8.
Autophagy ; 17(6): 1563-1564, 2021 06.
Article in English | MEDLINE | ID: mdl-33971785

ABSTRACT

Macroautophagy/autophagy is the cellular process responsible for the elimination and recycling of aggregated proteins and damaged organelles. Whereas autophagy is strictly regulated by several signaling cascades, the link between this process and the subcellular distribution of its regulatory pathways remains to be established. Our recent work suggests that the compartmentalization of PRKA/PKA (protein kinase cAMP-activated) determines its effects on autophagy. We found that increased cAMP levels generate dramatically different PRKA activity "signatures" mainly dependent on the actions of phosphatases and the distribution of the PRKA holoenzymes containing type II regulatory subunits (PRKAR2A and PRKAR2B; RII). In this punctum we discuss how compartmentalized PRKA signaling events are generated and affect the autophagic flux in specific cell types.


Subject(s)
Autophagy , Signal Transduction , Phosphoric Monoester Hydrolases , Protein Kinases/metabolism , Proteins
9.
Cell Death Differ ; 28(8): 2436-2449, 2021 08.
Article in English | MEDLINE | ID: mdl-33742135

ABSTRACT

Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Animals , Autophagy , Mice , Phosphorylation , Transfection
10.
Cells ; 10(2)2021 02 22.
Article in English | MEDLINE | ID: mdl-33671541

ABSTRACT

The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.


Subject(s)
Cyclic AMP/metabolism , Neurodegenerative Diseases/genetics , Aging , Humans , Signal Transduction
11.
Metabolites ; 11(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652890

ABSTRACT

Cholesterol is a non-essential metabolite that exerts both structural and signaling functions. However, cholesterol biosynthesis is elevated, and actively supports, pancreatic carcinogenesis. Our previous work showed that statins block the reprogramming of mutant KRAS-expressing acinar cells, that spontaneously undergo a metaplastic event termed acinar-to-ductal metaplasia (ADM) to initiate carcinogenesis. Here we tested the impact of cholesterol supplementation on isolated primary wild-type acinar cells and observed enhanced ductal transdifferentiation, associated with generation of the second messenger cyclic adenosine monophosphate (cAMP) and the induction of downstream protein kinase A (PKA). Inhibition of PKA suppresses cholesterol-induced ADM ex vivo. Live imaging using fluorescent biosensors dissected the temporal and spatial dynamics of PKA activation upon cholesterol addition and showed uneven activation both in the cytosol and on the outer mitochondrial membrane of primary pancreatic acinar cells. The ability of cholesterol to activate cAMP signaling is lost in tumor cells. Qualitative examination of multiple normal and transformed cell lines supports the notion that the cAMP/PKA axis plays different roles during multi-step pancreatic carcinogenesis. Collectively, our findings describe the impact of cholesterol availability on the cyclic AMP/PKA axis and plasticity of pancreatic acinar cells.

12.
Aging Clin Exp Res ; 33(5): 1367-1370, 2021 May.
Article in English | MEDLINE | ID: mdl-31925726

ABSTRACT

Mitochondria constantly contribute to the cell homeostasis and this, during the lifespan of a cell, takes its toll. Indeed, the functional decline of mitochondria appears correlated to the aging of the cell. The initial idea was that excessive production of reactive oxygen species (ROS) by functionally compromised mitochondria was the causal link between the decline of the organelle functions and cellular aging. However, in recent years accumulating evidence suggests that the contribution of mitochondria to cellular aging goes beyond ROS production. In this short review, we discuss how intracellular signalling, specifically the cAMP-signalling cascade, is involved in the regulation of mitochondrial functions and potentially in the processes that link mitochondrial status to cellular aging.


Subject(s)
Longevity , Mitochondria , Communication , Reactive Oxygen Species
13.
J Clin Endocrinol Metab ; 106(3): 736-749, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33247923

ABSTRACT

CONTEXT: Melanocortin receptor-4 (MC4R) gene mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. OBJECTIVE: To explore whether and how a novel heterozygous MC4R variant (MC4R-F313Sfs*29), identified in a young boy (body mass index [BMI] 38.8 kg/m2) during a mutation analysis conducted in a cohort of patients with obesity, plays a determinant pathophysiological role in the obesity development. DESIGN SETTING AND PATIENTS: The genetic screening was carried out in a total of 209 unrelated patients with obesity (BMI ≥ 35 kg/m2). Structural and functional characterization of the F313Sfs*29-mutated MC4R was performed using computational approaches and in vitro, using HEK293 cells transfected with genetically encoded biosensors for cAMP and Ca2+. RESULTS: The F313Sfs*29 was the only variant identified. In vitro experiments showed that HEK293 cells transfected with the mutated form of MC4R did not increase intracellular cAMP or Ca2+ levels after stimulation with a specific agonist in comparison with HEK293 cells transfected with the wild type form of MC4R (∆R/R0 = -90% ± 8%; P < 0.001). In silico modeling showed that the F313Sfs*29 mutation causes a major reorganization in the cytosolic domain of MC4R, thus reducing the affinity of the putative GalphaS binding site. CONCLUSIONS: The newly discovered F313Sfs*29 variant of MC4R may be involved in the impairment of α-MSH-induced cAMP and Ca2+ signaling, blunting intracellular G protein-mediated signal transduction. This alteration might have led to the dysregulation of satiety signaling, resulting in hyperphagia and early onset of obesity.


Subject(s)
Obesity, Morbid/genetics , Receptor, Melanocortin, Type 4/genetics , Adolescent , Adult , Age of Onset , Child , Cohort Studies , DNA Mutational Analysis , Female , Genetic Association Studies , Genetic Predisposition to Disease , Growth Charts , HEK293 Cells , Humans , Italy/epidemiology , Loss of Function Mutation/genetics , Male , Middle Aged , Models, Molecular , Obesity, Morbid/epidemiology , Pediatric Obesity/epidemiology , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/chemistry
14.
Cell Calcium ; 93: 102320, 2021 01.
Article in English | MEDLINE | ID: mdl-33296837

ABSTRACT

Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.


Subject(s)
Cyclic AMP/metabolism , Mitochondria/metabolism , Signal Transduction , Animals , Calcium Signaling , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Phosphorylation
16.
Prog Biophys Mol Biol ; 154: 30-38, 2020 08.
Article in English | MEDLINE | ID: mdl-31266653

ABSTRACT

Cyclic 3'-5' adenosine monophosphate (cAMP) is a key modulator of cardiac function. Thanks to the sophisticated organization of its pathway in distinct functional units called microdomains, cAMP is involved in the regulation of both inotropy and chronotropy as well as transcription and cardiac death. While visualization of cAMP microdomains can be achieved thanks to cAMP-sensitive FRET-based sensors, the molecular mechanisms through which cAMP-generating stimuli are coupled to distinct functional outcomes are not well understood. One possibility is that each stimulus activates multiple microdomains in order to generate a spatiotemporal code that translates into function. To test this hypothesis here we propose a series of experimental protocols that allow to simultaneously follow cAMP or Protein Kinase A (PKA)-dependent phosphorylation in different subcellular compartments of living cells. We investigate the responses of ß Adrenergic receptors (ß1AR and ß2AR) challenged with selective drugs that enabled us to measure the actions of each receptor independently. At the whole cell level, we used a combination of co-culture with selective ßAR stimulation and were able to molecularly separate cardiac fibroblasts from neonatal rat ventricular myocytes based on their cAMP responses. On the other hand, at the subcellular level, these experimental protocols allowed us to dissect the relative weight of ß1 and ß2 adrenergic receptors on cAMP signalling at the cytosol and outer mitochondrial membrane of NRVMs. We propose that experimental procedures that allow the collection of multiparametric data are necessary in order to understand the molecular mechanisms underlying the coupling between extracellular signals and cellular responses.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , Cell Line , Cyclic AMP/metabolism , Extracellular Space/metabolism , Humans , Mitochondrial Membranes/metabolism , Myocytes, Cardiac/cytology
17.
Proc Natl Acad Sci U S A ; 115(28): E6497-E6506, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941564

ABSTRACT

Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase-anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Membrane Microdomains/enzymology , Membrane Proteins/metabolism , Mitochondrial Membranes/enzymology , Mitochondrial Proteins/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/genetics , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Membrane Microdomains/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Rats , Rats, Sprague-Dawley
18.
Biochem Biophys Res Commun ; 500(1): 65-74, 2018 05 27.
Article in English | MEDLINE | ID: mdl-28501614

ABSTRACT

In recent years, our idea of mitochondria evolved from "mere" energy and metabolite producers to key regulators of many cellular functions. In order to preserve and protect their functional status, these organelles engage a number of dynamic processes that allow them to decrease accumulated burden and maintain their homeostasis. Indeed, mitochondria can unite (fusion), divide (fission), position themselves strategically in the cell (motility/trafficking) and if irreversibly damaged or dysfunctional eliminated (mitophagy). These dynamic processes can be controlled both by mitochondrial and cellular signalling pathways, hence allowing mitochondria to tune their function to the cellular needs. Among the regulatory mechanisms, reversible phosphorylation downstream the cyclic AMP (cAMP) signalling cascade was shown to deeply influence mitochondrial dynamics. This review explores the emerging evidence suggesting that cAMP is a key player in the orchestration of mitochondrial fusion/fission, motility and mitophagy, extending the repertoire of this second messenger, which is now recognised as a major regulator of mitochondrial homeostasis.


Subject(s)
Cyclic AMP/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitophagy/genetics , Signal Transduction/genetics , Animals , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Dynamins , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Homeostasis/genetics , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Movement , Phosphorylation
19.
Adv Exp Med Biol ; 981: 279-322, 2017.
Article in English | MEDLINE | ID: mdl-29594866

ABSTRACT

A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.


Subject(s)
Calcium Signaling/physiology , Cyclic AMP/metabolism , Endoplasmic Reticulum/metabolism , Mitochondrial Membranes/metabolism , Nuclear Envelope/metabolism , Animals , Cyclic AMP/genetics , Endoplasmic Reticulum/genetics , Humans , Nuclear Envelope/genetics
20.
J Gen Physiol ; 149(1): 1-36, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28028123

ABSTRACT

Cellular signaling networks are composed of multiple pathways, often interconnected, that form complex networks with great potential for cross-talk. Signal decoding depends on the nature of the message as well as its amplitude, temporal pattern, and spatial distribution. In addition, the existence of membrane-bound organelles, which are both targets and generators of messages, add further complexity to the system. The availability of sensors that can localize to specific compartments in live cells and monitor their targets with high spatial and temporal resolution is thus crucial for a better understanding of cell pathophysiology. For this reason, over the last four decades, a variety of strategies have been developed, not only to generate novel and more sensitive probes for ions, metabolites, and enzymatic activity, but also to selectively deliver these sensors to specific intracellular compartments. In this review, we summarize the principles that have been used to target organic or protein sensors to different cellular compartments and their application to cellular signaling.


Subject(s)
Biosensing Techniques , Cell Membrane/metabolism , Signal Transduction/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL