Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 25(11): 1561, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945824
2.
Nat Cell Biol ; 25(10): 1405, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821670
3.
Nat Cell Biol ; 25(9): 1240, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37696953
4.
Nat Cell Biol ; 25(9): 1235-1236, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648774
5.
Nat Cell Biol ; 25(9): 1237-1239, 2023 09.
Article in English | MEDLINE | ID: mdl-37648775
6.
Nat Cell Biol ; 25(3): 372, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36918695
7.
Nat Cell Biol ; 25(2): 200-202, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36726021
9.
Nat Cell Biol ; 24(12): 1686, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36474073
10.
Nat Cell Biol ; 24(8): 1179, 2022 08.
Article in English | MEDLINE | ID: mdl-35941367
11.
Nat Cell Biol ; 24(4): 403, 2022 04.
Article in English | MEDLINE | ID: mdl-35414017
13.
Nat Cell Biol ; 23(7): 704-717, 2021 07.
Article in English | MEDLINE | ID: mdl-34253898

ABSTRACT

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.


Subject(s)
Cell Proliferation/drug effects , Cellular Senescence/drug effects , DNA Transposable Elements , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Interferon-Induced Helicase, IFIH1/metabolism , Myeloablative Agonists/pharmacology , Animals , Chromatin Assembly and Disassembly/drug effects , Endogenous Retroviruses/genetics , Enzyme Activation , HEK293 Cells , Hematopoietic Stem Cells/enzymology , Humans , Interferon-Induced Helicase, IFIH1/genetics , Ligands , Long Interspersed Nucleotide Elements , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
14.
Immunity ; 53(5): 934-951.e9, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33159854

ABSTRACT

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/metabolism , Repetitive Sequences, Nucleic Acid , Signal Transduction , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Biomarkers , Chromatin Assembly and Disassembly , DNA Transposable Elements , Disease Susceptibility , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Immunity, Innate , Immunohistochemistry , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , RNA Helicases/deficiency , RNA Helicases/genetics , RNA-Binding Proteins/metabolism , TNF Receptor-Associated Factor 6/metabolism , Valproic Acid/pharmacology , Zebrafish
15.
Leukemia ; 34(10): 2673-2687, 2020 10.
Article in English | MEDLINE | ID: mdl-32555368

ABSTRACT

Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2. In total, we identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N = 4); c.649C>T, p.L217L; c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N = 2). They accounted for 8.2% (9/110) of cases with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation (c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or stability. In summary, synonymous GATA2 substitutions are a new common cause of GATA2 deficiency. These findings have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders.


Subject(s)
GATA2 Deficiency/genetics , GATA2 Transcription Factor/deficiency , GATA2 Transcription Factor/genetics , RNA/genetics , Silent Mutation/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Heterozygote , Humans , Immunologic Deficiency Syndromes/genetics , Male , Myelodysplastic Syndromes/genetics , Phenotype , Young Adult
16.
Nat Commun ; 9(1): 3090, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082823

ABSTRACT

The H2.0-like homeobox transcription factor (HLX) regulates hematopoietic differentiation and is overexpressed in Acute Myeloid Leukemia (AML), but the mechanisms underlying these functions remain unclear. We demonstrate here that HLX overexpression leads to a myeloid differentiation block both in zebrafish and human hematopoietic stem and progenitor cells (HSPCs). We show that HLX overexpression leads to downregulation of genes encoding electron transport chain (ETC) components and upregulation of PPARδ gene expression in zebrafish and human HSPCs. HLX overexpression also results in AMPK activation. Pharmacological modulation of PPARδ signaling relieves the HLX-induced myeloid differentiation block and rescues HSPC loss upon HLX knockdown but it has no effect on AML cell lines. In contrast, AMPK inhibition results in reduced viability of AML cell lines, but minimally affects myeloid progenitors. This newly described role of HLX in regulating the metabolic state of hematopoietic cells may have important therapeutic implications.


Subject(s)
Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/physiology , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/physiology , Zebrafish Proteins/physiology , Animals , Autophagy , Cell Differentiation , Cell Proliferation , Cell Survival , Gene Expression Regulation, Leukemic , Hematopoiesis , Homeodomain Proteins/genetics , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Membrane Potential, Mitochondrial , PPAR gamma/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Signal Transduction , Stem Cells/metabolism , Transcription Factors/genetics , Zebrafish , Zebrafish Proteins/genetics
17.
Front Immunol ; 7: 487, 2016.
Article in English | MEDLINE | ID: mdl-27872627

ABSTRACT

Hematopoietic stem cells (HSCs) are a rare population that gives rise to almost all cells of the hematopoietic system, including immune cells. Until recently, it was thought that immune cells sense inflammatory signaling and HSCs respond only secondarily to these signals. However, it was later shown that adult HSCs could directly sense and respond to inflammatory signals, resulting in a higher output of immune cells. Recent studies demonstrated that inflammatory signaling is also vital for HSC ontogeny. These signals are thought to arise in the absence of pathogens, are active during development, and indispensable for HSC formation. In contrast, during times of stress and disease, inflammatory responses can be activated and can have devastating effects on HSCs. In this review, we summarize the current knowledge about inflammatory signaling in HSC development and maintenance, as well as the endogenous molecular cues that can trigger inflammatory pathway activation. Finally, we comment of the role of inflammatory signaling in hematopoietic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...