Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014171

ABSTRACT

In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid-membranes called pyrenoid tubules, proposed to deliver CO2. In the model alga Chlamydomonas reinhardtii (Chlamydomonas), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules and heterologous expression of BST4 in Arabidopsis thaliana did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutant did not show impaired growth at air level CO2. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we show that bst4 displays a transiently lower thylakoid lumenal pH during dark to light transition compared to control strains. When acclimated to high light, bst4 had sustained higher NPQ and elevated levels of light-induced H2O2 production. We conclude that BST4 is not a tethering protein, but rather is an ion channel involved in lumenal pH regulation possibly by mediating bicarbonate transport across the pyrenoid tubules.

3.
Trends Plant Sci ; 28(11): 1290-1309, 2023 11.
Article in English | MEDLINE | ID: mdl-37423785

ABSTRACT

Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.


Subject(s)
Carbon , Plant Stomata , Carbon Dioxide , Water , Plant Leaves , Photosynthesis
4.
Plant Physiol ; 187(4): 2092-2109, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34618033

ABSTRACT

Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.


Subject(s)
Ion Channel Gating/drug effects , Plant Physiological Phenomena/drug effects , Plants/metabolism , Shaker Superfamily of Potassium Channels/metabolism
5.
New Phytol ; 227(6): 1847-1857, 2020 09.
Article in English | MEDLINE | ID: mdl-32367511

ABSTRACT

Plants utilising crassulacean acid metabolism (CAM) concentrate CO2 around RuBisCO while reducing transpirational water loss associated with photosynthesis. Unlike stomata of C3 and C4 species, CAM stomata open at night for the mesophyll to fix CO2 into malate (Mal) and store it in the vacuole. CAM plants decarboxylate Mal in the light, generating high CO2 concentrations within the leaf behind closed stomata for refixation by RuBisCO. CO2 may contribute to stomatal closure but additional mechanisms, plausibly including Mal activation of anion channels, ensure closure in the light. In the CAM species Kalanchoë fedtschenkoi, we found that guard cell anion channel activity, recorded under voltage clamp, follows KfSLAC1 and KfALMT12 transcript abundance, declining to near zero by the end of the light period. Unexpectedly, however, we found that extracellular Mal inhibited the anion current of Kalanchoë guard cells, both in wild-type and RNAi mutants with impaired Mal metabolism. We conclude that the diurnal cycle of anion channel gene transcription, rather than the physiological signal of Mal release, is a key factor in the inverted CAM stomatal cycle.


Subject(s)
Kalanchoe , Malates , Anions , Crassulacean Acid Metabolism , Photosynthesis
6.
Plant Physiol ; 181(3): 1096-1113, 2019 11.
Article in English | MEDLINE | ID: mdl-31548266

ABSTRACT

Cell expansion requires that ion transport and secretory membrane traffic operate in concert. Evidence from Arabidopsis (Arabidopsis thaliana) indicates that such coordination is mediated by physical interactions between subsets of so-called SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which drive the final stages of vesicle fusion, and K+ channels, which facilitate uptake of the cation to maintain cell turgor pressure as the cell expands. However, the sequence of SNARE binding with the K+ channels and its interweaving within the events of SNARE complex assembly for exocytosis remains unclear. We have combined protein-protein interaction and electrophysiological analyses to resolve the binding interactions of the hetero-oligomeric associations. We find that the RYxxWE motif, located within the voltage sensor of the K+ channels, is a nexus for multiple SNARE interactions. Of these, K+ channel binding and its displacement of the regulatory protein SEC11 is critical to prime the Qa-SNARE SYP121. Our results indicate a stabilizing role for the Qbc-SNARE SNAP33 in the Qa-SNARE transition to SNARE complex assembly with the R-SNARE VAMP721. They also suggest that, on its own, the R-SNARE enters an anomalous binding mode with the channels, possibly as a fail-safe measure to ensure a correct binding sequence. Thus, we suggest that SYP121 binding to the K+ channels serves the role of a primary trigger to initiate assembly of the secretory machinery for exocytosis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cell Cycle Proteins/metabolism , Potassium Channels/metabolism , SNARE Proteins/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cations/metabolism , Cell Cycle Proteins/genetics , Cell Membrane/metabolism , Exocytosis , Potassium Channels/genetics , Protein Transport , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , SNARE Proteins/genetics
7.
Biophys J ; 115(2): 353-360, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30021110

ABSTRACT

Despite growing interest in light-driven ion pumps for use in optogenetics, current estimates of their transport rates span two orders of magnitude due to challenges in measuring slow transport processes and determining protein concentration and/or orientation in membranes in vitro. In this study, we report, to our knowledge, the first direct quantitative measurement of light-driven Cl- transport rates of the anion pump halorohodopsin from Natronomonas pharaonis (NpHR). We used light-interfaced voltage clamp measurements on NpHR-expressing oocytes to obtain a transport rate of 219 (± 98) Cl-/protein/s for a photon flux of 630 photons/protein/s. The measurement is consistent with the literature-reported quantum efficiency of ∼30% for NpHR, i.e., 0.3 isomerizations per photon absorbed. To reconcile our measurements with an earlier-reported 20 ms rate-limiting step, or 35 turnovers/protein/s, we conducted, to our knowledge, novel consecutive single-turnover flash experiments that demonstrate that under continuous illumination, NpHR bypasses this step in the photocycle.


Subject(s)
Chlorides/metabolism , Halorhodopsins/metabolism , Light , Halobacteriaceae , Ion Transport/radiation effects , Kinetics
8.
Plant Cell Environ ; 41(11): 2668-2677, 2018 11.
Article in English | MEDLINE | ID: mdl-29940699

ABSTRACT

Vesicle traffic is tightly coordinated with ion transport for plant cell expansion through physical interactions between subsets of vesicle-trafficking (so-called SNARE) proteins and plasma membrane Kv channels, including the archetypal inward-rectifying K+ channel, KAT1 of Arabidopsis. Ion channels open and close rapidly over milliseconds, whereas vesicle fusion events require many seconds. Binding has been mapped to conserved motifs of both the Kv channels and the SNAREs, but knowledge of the temporal kinetics of their interactions, especially as it might relate to channel gating and its coordination with vesicle fusion remains unclear. Here, we report that the SNARE SYP121 promotes KAT1 gating through a persistent interaction that alters the stability of the channel, both in its open and closed states. We show, too, that SYP121 action on the channel open state requires SNARE anchoring in the plasma membrane. Our findings indicate that SNARE binding confers a conformational bias that encompasses the microscopic kinetics of channel gating, with leverage applied through the SNARE anchor in favour of the open channel.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Ion Channel Gating , Potassium Channels, Inwardly Rectifying/physiology , Potassium/metabolism , Qa-SNARE Proteins/physiology , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Biological Transport , Ion Channel Gating/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Qa-SNARE Proteins/metabolism , SNARE Proteins/metabolism , SNARE Proteins/physiology
9.
Trends Plant Sci ; 22(1): 81-95, 2017 01.
Article in English | MEDLINE | ID: mdl-27818003

ABSTRACT

Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H+-ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion.


Subject(s)
Biological Transport/physiology , Plant Proteins/metabolism , Biological Transport/genetics , Plant Physiological Phenomena , Plant Proteins/genetics , Potassium Channels/genetics , Potassium Channels/metabolism , Protein Binding , SNARE Proteins/genetics , SNARE Proteins/metabolism
10.
J Biol Chem ; 291(12): 6521-33, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26801610

ABSTRACT

The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K(+) efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with "phosphorylated" or "dephosphorylated" GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Phosphoprotein Phosphatases/physiology , Potassium Channels/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Genes, Dominant , Membrane Potentials , Molecular Mimicry , Molecular Sequence Data , Mutation, Missense , Phosphorylation , Plant Transpiration , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Two-Hybrid System Techniques , Xenopus laevis
11.
Nat Plants ; 1: 15108, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-27250541

ABSTRACT

Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.

12.
Plant Physiol ; 166(2): 960-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25185120

ABSTRACT

The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Water/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Ion Channel Gating , Molecular Sequence Data , Potassium Channels, Inwardly Rectifying/chemistry , Sequence Homology, Amino Acid
13.
J Exp Bot ; 65(3): 833-48, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24293613

ABSTRACT

Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Plant , Plants/metabolism , Potassium/metabolism , Signal Transduction , Models, Biological , Plant Leaves/physiology , Plant Roots/physiology , Plant Stems/physiology , Potassium Channels/metabolism , Potassium Deficiency , Soil/chemistry
14.
PLoS Genet ; 8(12): e1003120, 2012.
Article in English | MEDLINE | ID: mdl-23236296

ABSTRACT

Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator.


Subject(s)
Arabidopsis Proteins , Iron , Membrane Transport Proteins , Regulatory Sequences, Nucleic Acid/genetics , Zinc , Alleles , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , FMN Reductase/metabolism , Homeostasis/genetics , Homeostasis/physiology , Iron/metabolism , Iron/physiology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Quantitative Trait Loci/genetics , Toxins, Biological/genetics , Toxins, Biological/metabolism , Xylem/genetics , Xylem/metabolism , Zinc/metabolism , Zinc/physiology
15.
Biol Aujourdhui ; 206(4): 301-12, 2012.
Article in French | MEDLINE | ID: mdl-23419257

ABSTRACT

The combined daily consumption of fresh water ranges from 200 to 700 liters per capita per day in most developed countries, with about 70% being used for agricultural needs. Unlike other resources such as the different forms of energy, water has no other alternatives. With the looming prospect of global water crisis, the recent laudable success in deciphering the early steps in the signal transduction of the "stress hormone" abscisic acid (ABA) has ignited hopes that crops can be engineered with the capacity to maintain productivity while requiring less water input. Although ABA was first discovered in plants, it has resurfaced in the human brain (and many other non-plant organisms : sea sponge, some parasites, hydra to name a few), suggesting that its existence may be widespread. In humans, more amazingly, ABA has shown anti-inflammatory and antiviral properties. Even its receptors and key signaling intermediates have homologs in the human genome suggesting that evolution has re-fashioned these same proteins into new functional contexts. Thus, learning about the molecular mechanisms of ABA in action using the more flexible plant model will be likely beneficial to other organisms, and especially in human diseases, which is topical in the medical circle. ABA can accumulate up to 10 to 30-fold in plants under drought stress relative to unstressed conditions. The built up of the hormone then triggers diverse adaptive pathways permitting plants to withstand temporary bouts of water shortage. One favorite experimental model to unravel ABA signaling mechanisms in all of its intimate detail is based on the hormone's ability to elicit stomatal closure - a rapid cellular response of land plants to limit water loss through transpiration. Each microscopic stoma, or pore, is contoured by two specialized kidney-shaped cells called the guard cells. Because land plants are protected by a waxy cuticle impermeable to gas exchange, the stomatal pores are thus the primary portals for photosynthetic CO(2) uptake. Drought, by biasing pathways that lead to rapid closure of these pores, has therefore a negative impact on photosynthesis, and consequently, biomass as well. The stomatal aperture widens and narrows by expansion and contraction, respectively, of these flanking guard cells caused by changes in the intracellular concentrations of ion fluxes. These transport mechanisms most likely share fundamental principles with any excitable cell. These events require coordination of channels, vacuolar and membrane transporters that generate a specific pattern of electrical signals that relay the ABA stimulus. Research on ABA begun in the 1960's has now been crowned by the achievement of having identified the soluble ABA receptor that turns on and off the activities of a kinase/phosphatase pair, as the heart of the signaling complex. Results distilled from the latest structural studies on these ABA receptors, characterized by the so-called START domain, are beginning to tender the most exciting promise for rational design of agonists and antagonists towards modulating stress adaptive ability in plants. This review will chart the recent extraordinary progress that has enlightened us on how ABA controls membrane transport mechanisms that evoke the fast stomatal closing pathway.


Subject(s)
Abscisic Acid/physiology , Droughts , Plant Physiological Phenomena , Stress, Physiological/physiology , Adaptation, Physiological/physiology , Animals , Humans , Photosynthesis/physiology , Plant Stomata/physiology , Plants/metabolism , Signal Transduction/physiology , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL