Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7858, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543805

ABSTRACT

SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/ß-catenin signalling leading to repression of PKA activity and ectopic activation of ß-catenin. At the cellular level, this blocks transdifferentiation of ß-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.


Subject(s)
Cell Transdifferentiation , Cysteine Endopeptidases , Glucocorticoids , Animals , Mice , Adrenal Cortex/metabolism , Adrenal Cortex Hormones/metabolism , Adrenocorticotropic Hormone/metabolism , beta Catenin/metabolism , Cell Transdifferentiation/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Glucocorticoids/metabolism , Wnt Signaling Pathway
2.
Sci Adv ; 8(41): eadd0422, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36240276

ABSTRACT

Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of Znrf3 in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts. This male-specific phenotype is associated with androgen-dependent induction of senescence, recruitment, and differentiation of highly phagocytic macrophages that clear out senescent cells. In contrast, in females, macrophage recruitment is delayed and dampened, which allows for aggressive tumor progression. Consistently, analysis of TCGA-ACC data shows that phagocytic macrophages are more prominent in men and are associated with better prognosis. Together, these data show that phagocytic macrophages are key players in the sexual dimorphism of ACC that could be previously unidentified allies in the fight against this devastating cancer.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/pathology , Androgens , Animals , Female , Male , Mice , Prognosis
3.
Cell Rep ; 40(2): 111073, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35830806

ABSTRACT

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.


Subject(s)
Cushing Syndrome , Animals , Catalytic Domain/genetics , Cushing Syndrome/genetics , Cushing Syndrome/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hydrocortisone/metabolism , Mice , Proteomics
4.
J Invest Dermatol ; 142(11): 2949-2957.e9, 2022 11.
Article in English | MEDLINE | ID: mdl-35568059

ABSTRACT

Carney complex is a rare familial multineoplastic syndrome predisposing to endocrine and nonendocrine tumors due to inactivating mutations of PRKAR1A, leading to perturbations of the cAMP‒protein kinase A signaling pathway. Skin lesions are the most common manifestation of Carney complex, including lentigines, blue nevi, and cutaneous myxomas in unusual locations such as oral and genital mucosa. Unlike endocrine disorders, the pathogenesis of skin lesions remains unexplained. In this study, we show that embryonic invalidation of the Prkar1a gene in steroidogenic factor-1‒expressing cells leads to the development of familial skin pigmentation alterations, reminiscent of those in patients with Carney complex. Immunohistological and molecular analyses, coupled with genetic monitoring of recombinant cell lineages in mouse skin, suggest that familial lentiginosis and myxomas occur in skin areas specifically enriched in dermal melanocytes. In lentigines- and blue nevi‒prone areas from mutant mice and patients, Prkar1a/PRKAR1A invalidation occurs in a subset of dermal fibroblasts capable of inducing, under the influence of protein kinase A signaling, the production of promelanogenic EDN3 and hepatocyte GF signals. Our model strongly suggests that the origin of the typical Carney complex cutaneous lesions is the result of noncell-autonomous promelanogenic activity of a dermal fibroblast population sharing a community of origin with steroidogenic factor-1 lineage.


Subject(s)
Carney Complex , Lentigo , Myxoma , Nevus, Blue , Skin Diseases , Animals , Mice , Carney Complex/genetics , Carney Complex/pathology , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Myxoma/genetics , Myxoma/pathology , Syndrome , Lentigo/pathology
5.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34850745

ABSTRACT

Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.


Subject(s)
Carney Complex/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Sertoli Cells/cytology , Testicular Neoplasms/metabolism , Wnt4 Protein/metabolism , Animals , Apoptosis , Carney Complex/genetics , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Disease Models, Animal , Gene Expression Profiling , Genes, Tumor Suppressor , Humans , Male , Mice , Mice, Knockout , Mutation , Oligonucleotide Array Sequence Analysis , Paracrine Communication , Phenotype , Pigmentation , Seminiferous Tubules/metabolism , Testis/metabolism , Transcriptome
6.
Mol Cell Endocrinol ; 526: 111195, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33571577

ABSTRACT

The hypothalamic-pituitary-adrenal axis is the primary neuroendocrine system activated to re-establish homeostasis during periods of stress, including critical illness and major surgery. During critical illness, evidence suggests that locally induced inflammation of the adrenal gland could facilitate immune-adrenal cross-talk and, in turn, modulate cortisol secretion. It has been hypothesized that immune cells are necessary to mediate the effect of inflammatory stimuli on the steroidogenic pathway that has been observed in vivo. To test this hypothesis, we developed and characterized a trans-well co-culture model of THP1 (human monocytic cell)-derived macrophages and ATC7 murine zona fasciculata adrenocortical cells. We found that co-culture of ATC7 and THP1 cells results in a significant increase in the basal levels of IL-6 mRNA in ATC7 cells, and this effect was potentiated by treatment with LPS. Addition of LPS to co-cultures of ATC7 and THP1 significantly decreased the expression of key adrenal steroidogenic enzymes (including StAR and DAX-1), and this was also found in ATC7 cells treated with pro-inflammatory cytokines. Moreover, 24-h treatment with the synthetic glucocorticoid dexamethasone prevented the effects of LPS stimulation on IL-6, StAR and DAX-1 mRNA in ATC7 cells co-cultured with THP1 cells. Our data suggest that the expression of IL-6 and steroidogenic genes in response to LPS depends on the activation of intra-adrenal immune cells. Moreover, we also show that the effects of LPS can be modulated by glucocorticoids in a time- and dose-dependent manner with potential implications for clinical practice.


Subject(s)
Immune System/metabolism , Models, Biological , Monocytes/cytology , Zona Fasciculata/cytology , Animals , Cell Line, Tumor , Coculture Techniques , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Mice , Monocytes/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Steroids/metabolism , THP-1 Cells , Time Factors
7.
Br J Cancer ; 124(4): 805-816, 2021 02.
Article in English | MEDLINE | ID: mdl-33214683

ABSTRACT

BACKGROUND: Understanding the pathways that drive adrenocortical carcinoma (ACC) is essential to the development of more effective therapies. This study investigates the role of the transcription factor HOXB9 and other HOX factors in ACC and its treatment. METHODS: We used transgenic mouse models to determine the role of Hoxb9 in adrenal tumour development. Patient transcriptomic data was analysed for the expression of HOX genes and their association with disease. Drug response studies on various adrenocortical models were done to establish novel therapeutic options. RESULTS: Our human ACC dataset analyses showed high expression of HOXB9, and other HOX factors, are associated with poorer prognosis. Transgenic overexpression of Hoxb9 in the adrenal cortex of mice with activated Ctnnb1 led to larger adrenal tumours. This phenotype was preferentially observed in male mice and was characterised by more proliferating cells and an increase in the expression of cell cycle genes, including Ccne1. Adrenal tumour cells were found to be dependent on HOX function for survival and were sensitive to a specific peptide inhibitor. CONCLUSIONS: These studies show Hoxb9 can promote adrenal tumour progression in a sex-dependent manner and have identified HOX factors as potential drug targets, leading to novel therapeutic approaches in ACC.


Subject(s)
Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/genetics , Homeodomain Proteins/genetics , Peptides/pharmacology , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/pathology , Animals , Cell Proliferation/genetics , Female , Gene Expression , Homeodomain Proteins/biosynthesis , Humans , Male , Mice , Mice, Transgenic , Molecular Targeted Therapy , Peptides/genetics
8.
Mol Cell Endocrinol ; 499: 110612, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31604124

ABSTRACT

Studies in vivo have suggested the involvement of CREB-regulated transcription coactivator (CRTC)2 on ACTH-induced transcription of the key steroidogenic protein, Steroidogenic Acute Regulatory (StAR). The present study uses two ACTH-responsive adrenocortical cell lines, to examine the role of CRTC on Star transcription. Here we show that ACTH-induced Star primary transcript, or heteronuclear RNA (hnRNA), parallels rapid increases in nuclear levels of the 3 isoforms of CRTC; CRTC1, CRTC2 and CRTC3. Furthermore, ACTH promotes recruitment of CRTC2 and CRTC3 by the Star promoter and siRNA knockdown of either CRTC3 or CRTC2 attenuates the increases in ACTH-induced Star hnRNA. Using pharmacological inhibitors of PKA, MAP kinase and calcineurin, we show that the effects of ACTH on Star transcription and CRTC nuclear translocation depend predominantly on the PKA pathway. The data provides evidence that CRTC2 and CRTC3, contribute to activation of Star transcription by ACTH, and that PKA/CRTC-dependent pathways are part of the multifactorial mechanisms regulating Star transcription.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Hormones/pharmacology , Phosphoproteins/genetics , Transcription Factors/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Female , Mice , Promoter Regions, Genetic , Protein Transport/drug effects , RNA, Heterogeneous Nuclear/genetics , Rats , Signal Transduction/drug effects , Transcriptional Activation/drug effects
9.
Br J Cancer ; 121(5): 384-394, 2019 08.
Article in English | MEDLINE | ID: mdl-31363169

ABSTRACT

BACKGROUND: EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. METHODS: We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. RESULTS: We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. CONCLUSIONS: Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Adrenocortical Carcinoma/genetics , E2F1 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Gene Expression Regulation, Neoplastic , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromatin Immunoprecipitation , Computational Biology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Humans , Indoles/pharmacology , Mice, Knockout , Multivariate Analysis , Proportional Hazards Models , Ribonucleoside Diphosphate Reductase/antagonists & inhibitors , Ribonucleoside Diphosphate Reductase/genetics , Securin/genetics
10.
FASEB J ; 33(9): 10218-10230, 2019 09.
Article in English | MEDLINE | ID: mdl-31208233

ABSTRACT

SUMOylation is a highly conserved and dynamic post-translational mechanism primarily affecting nuclear programs for adapting organisms to stressful challenges. Alteration of SUMOylation cycles leads to severe developmental and homeostatic defects and malignancy, but signals coordinating SUMOylation are still unidentified. The adrenal cortex is a zonated endocrine gland that controls body homeostasis and stress response. Here, we show that in human and in mouse adrenals, SUMOylation follows a decreasing centripetal gradient that mirrors cortical differentiation flow and delimits highly and weakly SUMOylated steroidogenic compartments, overlapping glomerulosa, and fasciculata zones. Activation of PKA signaling by acute hormonal treatment, mouse genetic engineering, or in Carney complex results in repression of small ubiquitin-like modifier (SUMO) conjugation in the inner cortex by coordinating expression of SUMO pathway inducers and repressors. Conversely, genetic activation of canonical wingless-related integration site signaling maintains high SUMOylation potential in the outer neoplastic cortex. Thus, SUMOylation is tightly regulated by signaling pathways that orchestrate adrenal zonation and diseases.-Dumontet, T., Sahut-Barnola, I., Dufour, D., Lefrançois-Martinez, A.-M., Berthon, A., Montanier, N., Ragazzon, B., Djari, C., Pointud, J.-C., Roucher-Boulez, F., Batisse-Lignier, M., Tauveron, I., Bertherat, J., Val, P., Martinez, A. Hormonal and spatial control of SUMOylation in the human and mouse adrenal cortex.


Subject(s)
Adrenal Cortex/metabolism , Adrenocorticotropic Hormone/pharmacology , Protein Processing, Post-Translational/physiology , Sumoylation/physiology , Adrenal Cortex/drug effects , Adrenal Cortex/ultrastructure , Adrenal Cortex Neoplasms/pathology , Adrenocorticotropic Hormone/administration & dosage , Animals , Carney Complex/metabolism , Cell Line, Tumor , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/physiology , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Delayed-Action Preparations , Dexamethasone/analogs & derivatives , Dexamethasone/pharmacology , Female , Humans , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Proteins/metabolism , Protein Processing, Post-Translational/drug effects , Signal Transduction/drug effects , Sumoylation/drug effects , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , Zona Fasciculata/drug effects , Zona Fasciculata/metabolism , Zona Glomerulosa/drug effects , Zona Glomerulosa/metabolism , beta Catenin/deficiency , beta Catenin/genetics
11.
Proc Natl Acad Sci U S A ; 115(52): E12265-E12274, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30541888

ABSTRACT

Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.


Subject(s)
Adrenal Cortex/enzymology , Cyclic AMP-Dependent Protein Kinase RIbeta Subunit/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Signal Transduction , Adrenal Cortex/metabolism , Animals , Cell Differentiation , Cyclic AMP-Dependent Protein Kinase RIbeta Subunit/genetics , Cyclic Nucleotide Phosphodiesterases, Type 1/genetics , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 7/genetics , Cyclic Nucleotide Phosphodiesterases, Type 7/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Steroids/metabolism , Zona Fasciculata/cytology , Zona Fasciculata/enzymology , Zona Fasciculata/metabolism , Zona Glomerulosa/cytology , Zona Glomerulosa/enzymology , Zona Glomerulosa/metabolism
12.
Ann Endocrinol (Paris) ; 79(3): 95-97, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29673697

ABSTRACT

The adrenocortical gland undergoes structural and functional remodelling in the fetal and postnatal periods. After birth, the fetal zone of the gland undergoes rapid involution in favor of the definitive cortex, which reaches maturity with the emergence of the zona reticularis(zR) at the adrenarche. The mechanisms underlying the adrenarche, the process leading to pre-puberty elevation of plasma androgens in higher primates, remain unknown, largely due to lack of any experimental model. By following up fetal and definitive cortex cell lines in mice, we showed that activation of protein kinase A (PKA) signaling mainly impacts the adult cortex by stimulating centripetal regeneration, with differentiation and then conversion of the zona fasciculata into a functional zR. Animals developed Cushing syndrome associated with primary hyperaldosteronism, suggesting possible coexistence of these hypersecretions in certain patients. Remarkably, all of these traits were sex-dependent: testicular androgens promoted WNT signaling antagonism on PKA, slowing cortical renewal and delaying onset of Cushing syndrome and the establishment of the zR in male mice, this being corrected by orchidectomy. In conclusion, zR derives from centripetal conversion of the zona fasciculata under cellular renewal induced by PKA signaling, determining the size of the adult cortex. Finally, we demonstrated that this PKA-dependent mobilization of cortical progenitors is sexually dimorphic and could, if confirmed in humans, account for female preponderance in adrenocortical pathologies.


Subject(s)
Adrenal Cortex/embryology , Adrenal Cortex/growth & development , Mice , Models, Animal , Adrenal Glands/embryology , Adrenal Glands/growth & development , Animals , Cell Differentiation , Female , Humans , Male , Mice, Knockout , Sexual Maturation/physiology
13.
JCI Insight ; 3(2)2018 01 25.
Article in English | MEDLINE | ID: mdl-29367455

ABSTRACT

The adrenal cortex undergoes remodeling during fetal and postnatal life. How zona reticularis emerges in the postnatal gland to support adrenarche, a process whereby higher primates increase prepubertal androgen secretion, is unknown. Using cell-fate mapping and gene deletion studies in mice, we show that activation of PKA has no effect on the fetal cortex, while it accelerates regeneration of the adult cortex, triggers zona fasciculata differentiation that is subsequently converted into a functional reticularis-like zone, and drives hypersecretion syndromes. Remarkably, PKA effects are influenced by sex. Indeed, testicular androgens increase WNT signaling that antagonizes PKA, leading to slower adrenocortical cell turnover and delayed phenotype whereas gonadectomy sensitizes males to hypercorticism and reticularis-like formation. Thus, reticularis results from ultimate centripetal conversion of adult cortex under the combined effects of PKA and cell turnover that dictate organ size. We show that PKA-induced progenitor recruitment is sexually dimorphic and may provide a paradigm for overrepresentation of women in adrenal diseases.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Sex Characteristics , Signal Transduction/physiology , Zona Fasciculata/metabolism , Zona Reticularis/metabolism , Adrenarche/metabolism , Age Factors , Androgens/metabolism , Animals , Cell Differentiation/physiology , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Embryo, Mammalian , Female , Male , Mice , Mice, Knockout , Models, Animal
14.
Nat Commun ; 7: 12751, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27624192

ABSTRACT

Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates ß-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling.


Subject(s)
Adrenal Gland Neoplasms/etiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Wnt Signaling Pathway , Zona Fasciculata/metabolism , Zona Glomerulosa/metabolism , Animals , Carcinogenesis , Cell Differentiation , Cell Line, Tumor , Female , Humans , Mice , Phosphorylation , Zona Fasciculata/cytology , Zona Glomerulosa/cytology , beta Catenin/metabolism
15.
Hum Mol Genet ; 25(13): 2789-2800, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27149985

ABSTRACT

Adrenal Cortex Carcinoma (ACC) is an aggressive tumour with poor prognosis. Common alterations in patients include constitutive WNT/ß-catenin signalling and overexpression of the growth factor IGF2. However, the combination of both alterations in transgenic mice is not sufficient to trigger malignant tumour progression, suggesting that other alterations are required to allow development of carcinomas. Here, we have conducted a study of publicly available gene expression data from three cohorts of ACC patients to identify relevant alterations. Our data show that the histone methyltransferase EZH2 is overexpressed in ACC in the three cohorts. This overexpression is the result of deregulated P53/RB/E2F pathway activity and is associated with increased proliferation and poorer prognosis in patients. Inhibition of EZH2 by RNA interference or pharmacological treatment with DZNep inhibits cellular growth, wound healing and clonogenic growth and induces apoptosis of H295R cells in culture. Further growth inhibition is obtained when DZNep is combined with mitotane, the gold-standard treatment for ACC. Altogether, these observations suggest that overexpression of EZH2 is associated with aggressive progression and may constitute an interesting therapeutic target in the context of ACC.


Subject(s)
Adrenal Cortex Neoplasms/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Adrenal Cortex Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Databases, Nucleic Acid , Disease Progression , Gene Expression , Genetic Predisposition to Disease/genetics , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , Mice, Transgenic , RNA Interference , Risk Factors , Wnt Signaling Pathway , beta Catenin/genetics
16.
Endocrinology ; 156(5): 1671-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25730106

ABSTRACT

Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.


Subject(s)
Adipocytes/metabolism , Aldehyde Reductase/genetics , Cell Differentiation/genetics , Dinoprost/biosynthesis , Hydroxyprostaglandin Dehydrogenases/genetics , RNA, Messenger/metabolism , 3T3-L1 Cells , Adipogenesis/genetics , Adipose Tissue/metabolism , Adult , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/metabolism , Animals , Cloprostenol/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Profiling , Humans , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Hydroxyprostaglandin Dehydrogenases/metabolism , Luteolytic Agents/pharmacology , Male , Mice , Middle Aged , Multipotent Stem Cells , Obesity/metabolism , Phthalazines/pharmacology , Receptors, Prostaglandin/agonists , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Subcutaneous Fat, Abdominal/metabolism
17.
Hum Mol Genet ; 23(20): 5418-28, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24865460

ABSTRACT

Primary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis that contributes to the tumorigenic process. We used in vitro and in vivo models to investigate the possibility of a crosstalk between PKA and mammalian target of rapamycin (mTOR) pathways in adrenocortical cells and its possible involvement in apoptosis resistance. Impact of PKA signaling on activation of the mTOR pathway and apoptosis was measured in a mouse model of PPNAD (AdKO mice), in human and mouse adrenocortical cell lines in response to pharmacological inhibitors and in PPNAD tissues by immunohistochemistry. AdKO mice showed increased mTOR complex 1 (mTORC1) pathway activity. Inhibition of mTORC1 by rapamycin restored sensitivity of adrenocortical cells to apoptosis in AdKO but not in wild-type mice. In both cell lines and mouse adrenals, rapid phosphorylation of mTORC1 targets including BAD proapoptotic protein was observed in response to PKA activation. Accordingly, BAD hyperphosphorylation, which inhibits its proapoptotic activity, was increased in both AdKO mouse adrenals and human PPNAD tissues. In conclusion, mTORC1 pathway is activated by PKA signaling in human and mouse adrenocortical cells, leading to increased cell survival, which is correlated with BAD hyperphosphorylation. These alterations could be causative of tumor formation.


Subject(s)
Adrenal Cortex Diseases/metabolism , Adrenal Cortex Diseases/pathology , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , bcl-Associated Death Protein/metabolism , Adrenal Cortex Diseases/genetics , Adrenocorticotropic Hormone/administration & dosage , Adrenocorticotropic Hormone/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Disease Models, Animal , Gene Knockout Techniques , Humans , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/metabolism , Phosphorylation , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
18.
Hum Mol Genet ; 23(4): 889-905, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24087794

ABSTRACT

Primary aldosteronism (PA) is the main cause of secondary hypertension, resulting from adrenal aldosterone-producing adenomas (APA) or bilateral hyperplasia. Here, we show that constitutive activation of WNT/ß-catenin signalling is the most frequent molecular alteration found in 70% of APA. We provide evidence that decreased expression of the WNT inhibitor SFRP2 may be contributing to deregulated WNT signalling and APA development in patients. This is supported by the demonstration that mice with genetic ablation of Sfrp2 have increased aldosterone production and ectopic differentiation of zona glomerulosa cells. We further show that ß-catenin plays an essential role in the control of basal and Angiotensin II-induced aldosterone secretion, by activating AT1R, CYP21 and CYP11B2 transcription. This relies on both LEF/TCF-dependent activation of AT1R and CYP21 regulatory regions and indirect activation of CYP21 and CYP11B2 promoters, through increased expression of the nuclear receptors NURR1 and NUR77. Altogether, these data show that aberrant WNT/ß-catenin activation is associated with APA development and suggest that WNT pathway may be a good therapeutic target in PA.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Adenoma/metabolism , Aldosterone/biosynthesis , Hyperaldosteronism/metabolism , Wnt Signaling Pathway , Adrenal Cortex Neoplasms/complications , Adrenocortical Adenoma/complications , Adult , Aldosterone/blood , Aldosterone/metabolism , Animals , Cell Line, Tumor , Cytochrome P-450 CYP11B2/genetics , Cytochrome P-450 CYP11B2/metabolism , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Hyperaldosteronism/etiology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
19.
PLoS One ; 7(8): e44171, 2012.
Article in English | MEDLINE | ID: mdl-22952916

ABSTRACT

Adrenal cortical carcinomas (ACC) are rare but aggressive tumours associated with poor prognosis. The two most frequent alterations in ACC in patients are overexpression of the growth factor IGF2 and constitutive activation of Wnt/ß-catenin signalling. Using a transgenic mouse model, we have previously shown that constitutive active ß-catenin is a bona fide adrenal oncogene. However, although all these mice developed benign adrenal hyperplasia, malignant progression was infrequent, suggesting that secondary genetic events were required for aggressive tumour development. In the present paper, we have tested IGF2 oncogenic properties by developing two distinct transgenic mouse models of Igf2 overexpression in the adrenal cortex. Our analysis shows that despite overexpression levels ranging from 7 (basal) to 87 (ACTH-induced) fold, Igf2 has no tumour initiating potential in the adrenal cortex. However, it induces aberrant accumulation of Gli1 and Pod1-positive progenitor cells, in a hedgehog-independent manner. We have also tested the hypothesis that Igf2 may cooperate with Wnt signalling by mating Igf2 overexpressing lines with mice that express constitutive active ß-catenin in the adrenal cortex. We show that the combination of both alterations has no effect on tumour phenotype at stages when ß-catenin-induced tumours are benign. However, there is a mild promoting effect at later stages, characterised by increased Weiss score and proliferation. Formation of malignant tumours is nonetheless a rare event, even when Igf2 expression is further increased by ACTH treatment. Altogether these experiments suggest that the growth factor IGF2 is a mild contributor to malignant adrenocortical tumourigenesis.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Insulin-Like Growth Factor II/metabolism , Adrenal Glands/metabolism , Adrenal Glands/pathology , Animals , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , beta Catenin/metabolism
20.
Diabetes ; 61(11): 2796-806, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22851578

ABSTRACT

Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.


Subject(s)
Adipose Tissue, White/metabolism , Adiposity , Aldehyde Reductase/metabolism , Diet, High-Fat/adverse effects , Dinoprost/metabolism , Down-Regulation , Obesity/metabolism , 3T3-L1 Cells , Adipogenesis/drug effects , Adipose Tissue, White/drug effects , Adipose Tissue, White/pathology , Adiposity/drug effects , Aldehyde Reductase/genetics , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Cell Size/drug effects , Cloprostenol/pharmacology , Cloprostenol/therapeutic use , Crosses, Genetic , Dinoprost/agonists , Disease Susceptibility , Down-Regulation/drug effects , Insulin Resistance , Lipogenesis/drug effects , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Obesity/drug therapy , Obesity/etiology , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...