Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Genet Med ; 24(6): 1261-1273, 2022 06.
Article in English | MEDLINE | ID: mdl-35341651

ABSTRACT

PURPOSE: This study aimed to undertake a multidisciplinary characterization of the phenotype associated with SOX11 variants. METHODS: Individuals with protein altering variants in SOX11 were identified through exome and genome sequencing and international data sharing. Deep clinical phenotyping was undertaken by referring clinicians. Blood DNA methylation was assessed using Infinium MethylationEPIC array. The expression pattern of SOX11 in developing human brain was defined using RNAscope. RESULTS: We reported 38 new patients with SOX11 variants. Idiopathic hypogonadotropic hypogonadism was confirmed as a feature of SOX11 syndrome. A distinctive pattern of blood DNA methylation was identified in SOX11 syndrome, separating SOX11 syndrome from other BAFopathies. CONCLUSION: SOX11 syndrome is a distinct clinical entity with characteristic clinical features and episignature differentiating it from BAFopathies.


Subject(s)
DNA Methylation , Hypogonadism , Klinefelter Syndrome , Neurodevelopmental Disorders , SOXC Transcription Factors , DNA Methylation/genetics , Humans , Hypogonadism/genetics , Klinefelter Syndrome/genetics , Neurodevelopmental Disorders/genetics , Phenotype , SOXC Transcription Factors/genetics , Exome Sequencing
2.
J Med Genet ; 59(6): 544-548, 2022 06.
Article in English | MEDLINE | ID: mdl-33963046

ABSTRACT

INTRODUCTION: Motor neuron disease (MND) and frontotemporal dementia (FTD) comprise a neurodegenerative disease spectrum. Genetic testing and counselling is complex in MND/FTD owing to incomplete penetrance, variable phenotype and variants of uncertain significance. Affected patients and unaffected relatives are commonly referred to clinical genetics to consider genetic testing. However, no consensus exists regarding how such genetic testing should best be undertaken and on which patients. OBJECTIVE: We sought to ascertain UK clinical genetics testing practice in MND/FTD referrals, with the aim of helping inform guideline development. METHODS: MND/FTD clinical genetics referrals comprising both affected patients and unaffected relatives between 2012 and 2016 were identified and a standardised proforma used to collate data from clinical records. RESULTS: 301 referrals (70 affected, 231 unaffected) were reviewed across 10 genetics centres. Previously identified familial variants were known in 107 cases and 58% subsequently underwent testing (8 of 8 diagnostic and 54 of 99 predictive). The median number of genetic counselling appointments was 2 for diagnostic and 4 for predictive testing. Importantly, application of current UK Genomic Test Directory eligibility criteria would not have resulted in detection of all pathogenic variants observed in this cohort. CONCLUSION: We propose pragmatic MND/FTD genetic testing guidelines based on appropriate genetic counselling.


Subject(s)
Frontotemporal Dementia , Motor Neuron Disease , Neurodegenerative Diseases , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Genetic Counseling , Genetic Testing , Humans , Motor Neuron Disease/diagnosis , Motor Neuron Disease/genetics , Motor Neuron Disease/pathology , Neurodegenerative Diseases/genetics
3.
Biol Psychiatry ; 87(2): 100-112, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31443933

ABSTRACT

BACKGROUND: The X-chromosome gene USP9X encodes a deubiquitylating enzyme that has been associated with neurodevelopmental disorders primarily in female subjects. USP9X escapes X inactivation, and in female subjects de novo heterozygous copy number loss or truncating mutations cause haploinsufficiency culminating in a recognizable syndrome with intellectual disability and signature brain and congenital abnormalities. In contrast, the involvement of USP9X in male neurodevelopmental disorders remains tentative. METHODS: We used clinically recommended guidelines to collect and interrogate the pathogenicity of 44 USP9X variants associated with neurodevelopmental disorders in males. Functional studies in patient-derived cell lines and mice were used to determine mechanisms of pathology. RESULTS: Twelve missense variants showed strong evidence of pathogenicity. We define a characteristic phenotype of the central nervous system (white matter disturbances, thin corpus callosum, and widened ventricles); global delay with significant alteration of speech, language, and behavior; hypotonia; joint hypermobility; visual system defects; and other common congenital and dysmorphic features. Comparison of in silico and phenotypical features align additional variants of unknown significance with likely pathogenicity. In support of partial loss-of-function mechanisms, using patient-derived cell lines, we show loss of only specific USP9X substrates that regulate neurodevelopmental signaling pathways and a united defect in transforming growth factor ß signaling. In addition, we find correlates of the male phenotype in Usp9x brain-specific knockout mice, and further resolve loss of hippocampal-dependent learning and memory. CONCLUSIONS: Our data demonstrate the involvement of USP9X variants in a distinctive neurodevelopmental and behavioral syndrome in male subjects and identify plausible mechanisms of pathogenesis centered on disrupted transforming growth factor ß signaling and hippocampal function.


Subject(s)
Developmental Disabilities , Intellectual Disability , Transforming Growth Factor beta , Animals , Developmental Disabilities/genetics , Female , Haploinsufficiency , Humans , Intellectual Disability/genetics , Male , Mice , Phenotype , Signal Transduction , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
4.
J Med Genet ; 56(10): 701-710, 2019 10.
Article in English | MEDLINE | ID: mdl-31451536

ABSTRACT

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.


Subject(s)
Autistic Disorder/genetics , DNA Copy Number Variations , Epilepsy/genetics , Heart Diseases/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Case-Control Studies , Cohort Studies , Female , Heart Diseases/congenital , Humans , Loss of Function Mutation , Male , Sequence Deletion
5.
Am J Med Genet A ; 179(9): 1884-1894, 2019 09.
Article in English | MEDLINE | ID: mdl-31313512

ABSTRACT

Brachyolmia is a skeletal dysplasia characterized by short spine-short stature, platyspondyly, and minor long bone abnormalities. We describe 18 patients, from different ethnic backgrounds and ages ranging from infancy to 19 years, with the autosomal recessive form, associated with PAPSS2. The main clinical features include disproportionate short stature with short spine associated with variable symptoms of pain, stiffness, and spinal deformity. Eight patients presented prenatally with short femora, whereas later in childhood their short-spine phenotype emerged. We observed the same pattern of changing skeletal proportion in other patients. The radiological findings included platyspondyly, irregular end plates of the elongated vertebral bodies, narrow disc spaces and short over-faced pedicles. In the limbs, there was mild shortening of femoral necks and tibiae in some patients, whereas others had minor epiphyseal or metaphyseal changes. In all patients, exome and Sanger sequencing identified homozygous or compound heterozygous PAPSS2 variants, including c.809G>A, common to white European patients. Bi-parental inheritance was established where possible. Low serum DHEAS, but not overt androgen excess was identified. Our study indicates that autosomal recessive brachyolmia occurs across continents and may be under-recognized in infancy. This condition should be considered in the differential diagnosis of short femora presenting in the second trimester.


Subject(s)
Dwarfism/genetics , Multienzyme Complexes/genetics , Musculoskeletal Abnormalities/genetics , Osteochondrodysplasias/genetics , Sulfate Adenylyltransferase/genetics , Adolescent , Adult , Child , Child, Preschool , Dwarfism/diagnostic imaging , Dwarfism/physiopathology , Female , Genes, Recessive/genetics , Genetic Predisposition to Disease , Homozygote , Humans , Infant , Infant, Newborn , Male , Musculoskeletal Abnormalities/diagnostic imaging , Musculoskeletal Abnormalities/physiopathology , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/physiopathology , Pedigree , Radiography , Spine/diagnostic imaging , Spine/physiopathology , Exome Sequencing , Young Adult
6.
Genet Med ; 21(9): 2081-2091, 2019 09.
Article in English | MEDLINE | ID: mdl-30837697

ABSTRACT

PURPOSE: The Ehlers-Danlos syndromes (EDS) are a group of rare inherited connective tissue disorders. Vascular EDS (vEDS) is caused by pathogenic variants in COL3A1, most frequently glycine substitutions. We describe the phenotype of the largest series of vEDS patients with glutamic acid to lysine substitutions (Glu>Lys) in COL3A1, which were all previously considered to be variants of unknown significance. METHODS: Clinical and molecular data for seven families with three different Glu>Lys substitutions in COL3A1 were analyzed. RESULTS: These Glu>Lys variants were reclassified from variants of unknown significance to either pathogenic or likely pathogenic in accordance with American College of Medical Genetics and Genomics guidelines. All individuals with these atypical variants exhibited skin hyperextensibility as seen in individuals with classical EDS and classical-like EDS and evidence of tissue fragility as seen in individuals with vEDS. CONCLUSION: The clinical data demonstrate the overlap between the different EDS subtypes and underline the importance of next-generation sequencing gene panel analysis. The three different Glu>Lys variants point toward a new variant type in COL3A1 causative of vEDS, which has consistent clinical features. This is important knowledge for COL3A1 variant interpretation. Further follow-up data are required to establish the severity of tissue fragility complications compared with patients with other recognized molecular causes of vEDS.


Subject(s)
Collagen Type III/genetics , Ehlers-Danlos Syndrome/genetics , Skin Abnormalities/genetics , Adult , Aged , Ehlers-Danlos Syndrome/classification , Ehlers-Danlos Syndrome/pathology , Female , Glutamic Acid/genetics , Glycine/genetics , High-Throughput Nucleotide Sequencing , Humans , Lysine/genetics , Male , Middle Aged , Mutation , Pedigree , Phenotype , Skin Abnormalities/pathology
7.
Am J Med Genet A ; 176(9): 2004-2008, 2018 09.
Article in English | MEDLINE | ID: mdl-30079626

ABSTRACT

1q24q25 deletions cause a distinctive phenotype including proportionate short stature, microcephaly, brachydactyly, dysmorphic facial features and intellectual disability. We present a mother and son who have a 672 kb microdeletion at 1q24q25. They have the typical skeletal features previously described but do not have any associated intellectual disability. We compare the genes within our patients' deletion to those in the deletions of previously reported cases. This indicates two genes that may be implicated in the intellectual disability usually associated with this deletion syndrome; PIGC and C1orf105. In addition, our cases provide supporting evidence to recent published work suggesting that the skeletal features may be linked to the microRNAs miR199 and miR214, encoded within intron 14 of the Dynamin-3 gene.


Subject(s)
Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosomes, Human, Pair 1 , Genetic Association Studies , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adult , Comparative Genomic Hybridization , Female , Genetic Testing , Humans , Infant , Male , Symptom Assessment
10.
Clin Teach ; 8(3): 196-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21851569

ABSTRACT

BACKGROUND: The brachial plexus has posed problems for both students and teachers throughout generations of medical education. The anatomy is intricate, and traditional pictorial representations can be difficult to understand and learn. Few innovative teaching methods have been reported. CONTEXT: The basic anatomy of the brachial plexus is core knowledge required by medical students to aid clinical examination and diagnosis. A more detailed understanding is necessary for a variety of specialists, including surgeons, anaesthetists and radiologists. INNOVATION: Here, we present a novel, cheap and interactive method of teaching the brachial plexus. Using coloured pipe cleaners, teachers and students can construct three-dimensional models using different colours to denote the origin and outflow of each nerve. The three-dimensional nature of the model also allows for a better understanding of certain intricacies of the plexus. Students may use these models as adjuncts for self study, didactic lectures and tutorials. IMPLICATIONS: Compared with traditional textbooks and whiteboards, the pipe-cleaner model was preferred by medical students, and provided a higher level of student satisfaction. This was demonstrated and analysed using student feedback forms. Our model could be incorporated into current curricula to provide an effective and enjoyable way of rapidly teaching a difficult concept. Other such novel methods for teaching complex anatomical principles should be encouraged and explored.


Subject(s)
Brachial Plexus/anatomy & histology , Education, Medical/methods , Models, Biological , Teaching , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...