Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38012120

ABSTRACT

AIMS: Motile Aeromonas septicaemia (MAS) caused by motile Aeromonas species is an important disease in farmed freshwater fish due to intensification of culture and improper farm practices. This study characterized and profiled motile Aeromonas species recovered from clinically sick tilapia farmed in the Philippines, with a view to identifying targeted disease prevention and control measures against MAS in farmed tilapia species. METHODS AND RESULTS: Sixteen isolates from diseased farmed Nile tilapia were identified as Aeromonas veronii (n = 14), Aeromonas caviae (n = 1), and Aeromonas dhakensis (n = 1). Five biochemical profiles using API 20E were exhibited by the A. veronii strains giving an unreliable identification. A high level of agreement was observed in identifying the Aeromonas strains using 16S rRNA and rpoD gene sequencing, although the latter has a higher discriminatory value. Three or more virulence genes dominated by cytotoxic enterotoxin act and aerolysin aer were detected. Different genotypes based on virulence gene clustering suggested varied mechanisms used by Aeromonas to colonize and infect or to mutualistically co-exist with the fish. Acquired multiple antibiotic resistance was found in a single A. veronii isolate. All were susceptible to enrofloxacin, oxolinic acid, florfenicol, and chloramphenicol. Tetracycline and sulfonamide resistances and class 1 integron were detected in three A. veronii isolates. CONCLUSION: Several strains of motile aeromonads, especially A. veronii, which have varied genotypes based on virulence, biochemical profile, and antibiotic resistance, are involved in MAS in natural disease outbreaks in farmed Nile tilapia in the Philippines.


Subject(s)
Aeromonas , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Animals , RNA, Ribosomal, 16S/genetics , Philippines , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/veterinary
2.
J Fish Dis ; 43(11): 1431-1442, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32929781

ABSTRACT

Streptococcosis cause severe losses for global tilapia farming, especially in developing countries. The aim of this study was to identify and characterize streptococci recovered from Nile tilapia farmed in the Philippines. Moribund and apparently healthy fish were sampled from grow-out cages, ponds and hatcheries. Clinical signs observed included exophthalmia, eye opacity, ascites, lethargy, erratic swimming and haemorrhages. Results showed that both Streptococcus iniae and Streptococcus agalactiae were associated with disease in these sites. Consistent with global reports, including those from South-East Asia, S. agalactiae was more widespread than S. iniae. Molecular serotyping of the S. agalactiae isolates identified the serotype Ia and serotype Ib. Histopathological findings were meningitis, meningoencephalitis and septicaemia. Identical virulence profiles were found for all strains of S. iniae, while S. agalactiae strains were separated into virulence profile I and profile II. All strains were susceptible to the tested antibiotics and resistant to oxolinic acid. Only S. agalactiae serotype Ib showed resistance to sulphamethoxazole-trimethoprim. This is the first study from the Philippines to characterize the streptococci involved in disease outbreaks in tilapia aquaculture. Outputs from this study will promote the development of efficacious disease control strategies in tilapia farming for the Philippines and South-East Asia.


Subject(s)
Fish Diseases/microbiology , Streptococcal Infections/veterinary , Streptococcus agalactiae/isolation & purification , Streptococcus iniae/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Aquaculture , Cichlids , Philippines , Serotyping , Streptococcal Infections/drug therapy , Streptococcus agalactiae/drug effects , Streptococcus iniae/drug effects , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL