Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 53, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261114

ABSTRACT

The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.


Subject(s)
DEAD-box RNA Helicases , MicroRNAs , Ribonuclease III , Humans , Kinetics , MicroRNAs/genetics , Phosphates , Substrate Specificity , DEAD-box RNA Helicases/genetics , Ribonuclease III/genetics
2.
Nucleic Acids Res ; 49(20): 11959-11973, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34718697

ABSTRACT

The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.


Subject(s)
Endoribonucleases/chemistry , Neurospora crassa/chemistry , RNA, Catalytic/chemistry , Magnetic Resonance Spectroscopy , Neurospora crassa/enzymology , Nucleic Acid Conformation , Scattering, Small Angle , X-Ray Diffraction
3.
Brain ; 144(11): 3461-3476, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34115105

ABSTRACT

TDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. Ras-GAP SH3-domain-binding protein 1 (G3BP1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3' untranslated region. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data indicate that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/metabolism , Neurons/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Amyotrophic Lateral Sclerosis/pathology , Cells, Cultured , Frontotemporal Dementia/pathology , Humans , Neurons/pathology , RNA, Messenger
4.
Methods Mol Biol ; 2167: 61-77, 2021.
Article in English | MEDLINE | ID: mdl-32712915

ABSTRACT

In vitro selection is an established approach to create artificial ribozymes with defined activities or to modify the properties of naturally occurring ribozymes. For the Varkud satellite ribozyme of Neurospora, an in vitro selection protocol based on its phosphodiester bond cleavage activity has not been previously reported. Here, we describe a simple protocol for cleavage-based in vitro selection that we recently used to identify variants of the Varkud satellite ribozyme able to target and cleave a non-natural stem-loop substrate derived from the HIV-1 TAR RNA. It allows quick selection of active ribozyme variants from the transcription reaction based on the size of the self-cleavage product without the need for RNA labeling. This results in a streamlined procedure that is easily adaptable to engineer ribozymes with new activities.


Subject(s)
Endoribonucleases/genetics , Endoribonucleases/metabolism , High-Throughput Nucleotide Sequencing/methods , Inverted Repeat Sequences/drug effects , Nuclear Proteins/genetics , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA-Binding Proteins/genetics , DNA, Single-Stranded/genetics , Endoribonucleases/isolation & purification , Gene Library , In Vitro Techniques , Inverted Repeat Sequences/genetics , Polymerase Chain Reaction , RNA, Catalytic/isolation & purification
5.
J Neurosci ; 40(43): 8262-8275, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32928885

ABSTRACT

A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an in vitro neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of Vglut2 mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2+ lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons.SIGNIFICANCE STATEMENT A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease.


Subject(s)
Corpus Striatum/physiology , Dopaminergic Neurons/metabolism , Vesicular Glutamate Transport Protein 2/biosynthesis , Animals , Animals, Newborn , Axons/physiology , Cell Lineage/genetics , Cell Survival/genetics , Corpus Striatum/embryology , Corpus Striatum/growth & development , Female , MPTP Poisoning/genetics , MPTP Poisoning/metabolism , Mesencephalon/embryology , Mesencephalon/growth & development , Mesencephalon/physiology , Mice , Mice, Knockout , Neural Pathways/embryology , Neural Pathways/growth & development , Neural Pathways/physiology , Neurotoxins/toxicity , Pregnancy , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Vesicular Glutamate Transport Protein 2/genetics
6.
Nucleic Acids Res ; 47(7): 3739-3751, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30993347

ABSTRACT

Investigating the dynamics of structural elements in functional RNAs is important to better understand their mechanism and for engineering RNAs with novel functions. Previously, we performed rational engineering studies with the Varkud satellite (VS) ribozyme and switched its specificity toward non-natural hairpin substrates through modification of a critical kissing-loop interaction (KLI). We identified functional VS ribozyme variants with surrogate KLIs (ribosomal RNA L88/L22 and human immunodeficiency virus-1 TAR/TAR*), but they displayed ∼100-fold lower cleavage activity. Here, we characterized the dynamics of KLIs to correlate dynamic properties with function and improve the activity of designer ribozymes. Using temperature replica exchange molecular dynamics, we determined that the natural KLI in the VS ribozyme supports conformational sampling of its closed and active state, whereas the surrogate KLIs display more restricted motions. Based on in vitro selection, the cleavage activity of a VS ribozyme variant with the TAR/TAR* KLI could be markedly improved by partly destabilizing the KLI but increasing conformation sampling. We formulated a mechanistic model for substrate binding in which the KLI dynamics contribute to formation of the active site. Our model supports the modular nature of RNA in which subdomain structure and dynamics contribute to define the thermodynamics and kinetics relevant to RNA function.


Subject(s)
Endoribonucleases/chemistry , HIV-1/chemistry , RNA, Catalytic/chemistry , RNA-Binding Proteins/chemistry , RNA/chemistry , Binding Sites , Endoribonucleases/genetics , Genes, rRNA/genetics , HIV-1/genetics , Models, Molecular , Nucleic Acid Conformation , RNA/genetics , RNA, Catalytic/genetics , RNA, Untranslated/chemistry , RNA, Untranslated/genetics , RNA-Binding Proteins/genetics , Thermodynamics
7.
BMC Biotechnol ; 18(1): 76, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30522464

ABSTRACT

BACKGROUND: Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure. RESULTS: Transfection conditions were first optimized to achieve expression levels between 10 and 18 mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4-9 mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5 nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2 ± 0.5 min- 1) and KM (1.2 ± 0.3 µM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption. CONCLUSIONS: The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway.


Subject(s)
DEAD-box RNA Helicases/biosynthesis , Epstein-Barr Virus Nuclear Antigens/genetics , HEK293 Cells/metabolism , Ribonuclease III/biosynthesis , DEAD-box RNA Helicases/analysis , DEAD-box RNA Helicases/genetics , Electrophoretic Mobility Shift Assay , Epstein-Barr Virus Nuclear Antigens/metabolism , Gene Expression Regulation , Humans , Ribonuclease III/analysis , Ribonuclease III/genetics , Transfection
8.
Article in English | MEDLINE | ID: mdl-28382748

ABSTRACT

Despite the large number of noncoding RNAs and their importance in several biological processes, our understanding of RNA structure and dynamics at atomic resolution is still very limited. Like many other RNAs, the Neurospora Varkud satellite (VS) ribozyme performs its functions through dynamic exchange of multiple conformational states. More specifically, the VS ribozyme recognizes and cleaves its stem-loop substrate via a mechanism that involves several structural transitions within its stem-loop substrate. The recent publications of high-resolution structures of the VS ribozyme, obtained by NMR spectroscopy and X-ray crystallography, offer an opportunity to integrate the data and closely examine the structural and dynamic properties of this model RNA system. Notably, these investigations provide a valuable example of the divide-and-conquer strategy for structural and dynamic characterization of a large RNA, based on NMR structures of several individual subdomains. The success of this divide-and-conquer approach reflects the modularity of RNA architecture and the great care taken in identifying the independently-folding modules. Together with previous biochemical and biophysical characterizations, the recent NMR and X-ray studies provide a coherent picture into how the VS ribozyme recognizes its stem-loop substrate. Such in-depth characterization of this RNA enzyme will serve as a model for future structural and engineering studies of dynamic RNAs and may be particularly useful in planning divide-and-conquer investigations. WIREs RNA 2017, 8:e1421. doi: 10.1002/wrna.1421 For further resources related to this article, please visit the WIREs website.


Subject(s)
Neurospora/chemistry , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Fungal/chemistry , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular , Structure-Activity Relationship
9.
Nucleic Acids Res ; 45(9): 5564-5576, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28334776

ABSTRACT

p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.


Subject(s)
Transcription Factor RelA/chemistry , Transcription Factor RelA/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Amino Acid Motifs , Binding Sites , Calorimetry , Magnetic Resonance Spectroscopy , Protein Binding , Protein Domains , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Substrate Specificity , Transcription, Genetic
10.
RNA ; 22(11): 1760-1770, 2016 11.
Article in English | MEDLINE | ID: mdl-27659051

ABSTRACT

As part of their normal life cycle, most RNA molecules associate with several proteins that direct their fate and regulate their function. Here, we describe a novel method for identifying proteins that associate with a target RNA. The procedure is based on the ARiBo method for affinity purification of RNA, which was originally developed to quickly purify RNA with high yields and purity under native conditions. The ARiBo method was further optimized using in vitro transcribed RNA to capture RNA-associating proteins from cellular extracts with high yields and low background protein contamination. For these RNA pull-downs, stem-loops present in the immature forms of let-7 miRNAs (miRNA stem-loops) were used as the target RNAs. Label-free quantitative mass spectrometry analysis allowed for the reliable identification of proteins that are specific to the stem-loops present in the immature forms of two miRNAs, let-7a-1 and let-7g. Several proteins known to bind immature forms of these let-7 miRNAs were identified, but with an improved coverage compared to previous studies. In addition, several novel proteins were identified that better define the protein interactome of the let-7 miRNA stem-loops and further link let-7 biogenesis to important biological processes such as development and tumorigenesis. Thus, combining the ARiBo pull-down method with label-free quantitative mass spectrometry provides an effective proteomic approach for identification of proteins that associate with a target RNA.


Subject(s)
Chromatography, Affinity/methods , Mass Spectrometry/methods , RNA/isolation & purification , Blotting, Western , Cell Line, Tumor , Electrophoresis, Polyacrylamide Gel , Humans
11.
Nucleic Acids Res ; 44(14): 6924-34, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27166370

ABSTRACT

The Neurospora VS ribozyme is a catalytic RNA that has the unique ability to specifically recognize and cleave a stem-loop substrate through formation of a highly stable kissing-loop interaction (KLI). In order to explore the engineering potential of the VS ribozyme to cleave alternate substrates, we substituted the wild-type KLI by other known KLIs using an innovative engineering method that combines rational and combinatorial approaches. A bioinformatic search of the protein data bank was initially performed to identify KLIs that are structurally similar to the one found in the VS ribozyme. Next, substrate/ribozyme (S/R) pairs that incorporate these alternative KLIs were kinetically and structurally characterized. Interestingly, several of the resulting S/R pairs allowed substrate cleavage with substantial catalytic efficiency, although with reduced activity compared to the reference S/R pair. Overall, this study describes an innovative approach for RNA engineering and establishes that the KLI of the trans VS ribozyme can be adapted to cleave other folded RNA substrates.


Subject(s)
Endoribonucleases/metabolism , Neurospora/enzymology , Nucleic Acid Conformation , Protein Engineering , RNA, Catalytic/metabolism , Base Sequence , Biocatalysis , Computational Biology , Crystallography, X-Ray , Databases, Protein , Endoribonucleases/chemistry , Enzyme Stability , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , RNA, Catalytic/chemistry , Substrate Specificity , Thermodynamics
12.
RNA ; 21(9): 1621-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26124200

ABSTRACT

As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III-IV-V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II-III-VI three-way junction and its adjoining stems. In addition, we localize Mg(2+)-binding sites within this structure using Mn(2+)-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg(2+) ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge-bulge interaction and Mg(2+) ions are critical for the stable folding of the II-III-VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II-III-VI junction that does not contain the II-VI bulge-bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme.


Subject(s)
Endoribonucleases/chemistry , Magnesium/metabolism , Neurospora/enzymology , RNA, Catalytic/chemistry , RNA, Fungal/chemistry , Base Pairing , Binding Sites , Catalytic Domain , Endoribonucleases/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Neurospora/chemistry , Nucleic Acid Conformation , RNA, Catalytic/metabolism , RNA, Fungal/metabolism
13.
Methods Enzymol ; 549: 49-84, 2014.
Article in English | MEDLINE | ID: mdl-25432744

ABSTRACT

Common approaches for purification of RNAs synthesized in vitro by the T7 RNA polymerase often denature the RNA and produce RNAs with chemically heterogeneous 5'- and 3'-ends. Thus, native affinity purification strategies that incorporate 5' and 3' trimming technologies provide a solution to two main disadvantages that arise from standard approaches for RNA purification. This chapter describes procedures for nondenaturing affinity purification of in vitro transcribed RNA using a 3'-ARiBo tag, which yield RNAs with a homogeneous 3'-end. The applicability of the method to RNAs of different sequences, secondary structures, and sizes (29-614 nucleotides) is described, including suggestions for troubleshooting common problems. In addition, this chapter presents three complementary approaches to producing 5'-homogeneity of the affinity-purified RNA: (1) selection of the starting sequence; (2) Cse3 endoribonuclease cleavage of a 5'-CRISPR tag; or (3) self-cleavage of a 5'-hammerhead ribozyme tag. The additional steps to express and purify the Cse3 endonuclease are detailed. In light of recent results, the advantages and limitations of current approaches to achieve 5'-homogeneity of affinity-purified RNA are discussed, such that one can select a suitable strategy to purify the RNA of interest.


Subject(s)
Affinity Labels/metabolism , Bacteria/genetics , Denaturing Gradient Gel Electrophoresis/methods , RNA/isolation & purification , Amino Acid Sequence , Bacillus anthracis/chemistry , Bacillus anthracis/genetics , Bacteria/chemistry , Bacteria/metabolism , Bacteriophage T7/metabolism , Bacteriophage lambda/chemistry , Bacteriophage lambda/genetics , Base Sequence , Cell Culture Techniques/methods , Cloning, Molecular/methods , Clustered Regularly Interspaced Short Palindromic Repeats , DNA-Directed RNA Polymerases/metabolism , Molecular Sequence Data , RNA/chemistry , RNA/genetics , RNA/metabolism , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcription, Genetic , Viral Proteins/metabolism
14.
Biochemistry ; 53(39): 6264-75, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25238589

ABSTRACT

The VS ribozyme is a catalytic RNA found within some natural isolates of Neurospora that is being used as a model system to improve our understanding of RNA structure, catalysis, and engineering. The catalytic domain contains five helical domains (SLII-SLVI) that are organized by two three-way junctions. The III-IV-V junction is required for high-affinity binding of the substrate domain (SLI) through formation of a kissing loop interaction with SLV. Here, we determine the high-resolution nuclear magnetic resonance (NMR) structure of a 47-nucleotide RNA containing the III-IV-V junction (J345). The J345 RNA adopts a Y-shaped fold typical of the family C three-way junctions, with coaxial stacking between stems III and IV and an acute angle between stems III and V. The NMR structure reveals that the core of the III-IV-V junction contains four stacked base triples, a U-turn motif, a cross-strand stacking interaction, an A-minor interaction, and a ribose zipper. In addition, the NMR structure shows that the cCUUGg tetraloop used to stabilize stem IV adopts a novel RNA tetraloop fold, different from the known gCUUGc tetraloop structure. Using Mn(2+)-induced paramagnetic relaxation enhancement, we identify six Mg(2+)-binding sites within J345, including one associated with the cCUUGg tetraloop and two with the junction core. The NMR structure of J345 likely represents the conformation of the III-IV-V junction in the context of the active VS ribozyme and suggests that this junction functions as a dynamic hinge that contributes to substrate recognition and catalysis. Moreover, this study highlights a new role for family C three-way junctions in long-range tertiary interactions.


Subject(s)
Endoribonucleases/chemistry , Magnesium/chemistry , Magnetic Resonance Spectroscopy/methods , RNA, Catalytic/chemistry , Base Sequence , Binding Sites , Endoribonucleases/metabolism , Magnesium/metabolism , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , RNA, Catalytic/metabolism
15.
RNA ; 20(9): 1451-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25051972

ABSTRACT

Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem-loop I (SLI) substrate and stem-loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem-loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8-3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7-8 kcal/mol than predicted for a comparable duplex containing three Watson-Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6-7 Watson-Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2-3 Watson-Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.


Subject(s)
Endoribonucleases/genetics , Endoribonucleases/metabolism , Neurospora/enzymology , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Base Pairing , Base Sequence , Binding Sites/genetics , Catalytic Domain/genetics , Endoribonucleases/chemistry , Magnesium/chemistry , Molecular Sequence Data , Neurospora/genetics , Nucleic Acid Conformation , Protein Binding , RNA Stability/genetics , RNA, Catalytic/chemistry , Substrate Specificity , Thermodynamics
16.
Nucleic Acids Res ; 42(7): 4615-28, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24452802

ABSTRACT

Lin28 inhibits the biogenesis of let-7 miRNAs through direct interactions with let-7 precursors. Previous studies have described seemingly inconsistent Lin28 binding sites on pre-let-7 RNAs. Here, we reconcile these data by examining the binding mechanism of Lin28 to the terminal loop of pre-let-7g (TL-let-7g) using biochemical and biophysical methods. First, we investigate Lin28 binding to TL-let-7g variants and short RNA fragments and identify three independent binding sites for Lin28 on TL-let-7g. We then determine that Lin28 assembles in a stepwise manner on TL-let-7g to form a stable 1:3 complex. We show that the cold-shock domain (CSD) of Lin28 is responsible for remodelling the terminal loop of TL-let-7g, whereas the NCp7-like domain facilitates the initial binding of Lin28 to TL-let-7g. This stable binding of multiple Lin28 molecules to the terminal loop of pre-let-7g extends to other precursors of the let-7 family, but not to other pre-miRNAs tested. We propose a model for stepwise assembly of the 1:1, 1:2 and 1:3 pre-let-7g/Lin28 complexes. Stepwise multimerization of Lin28 on pre-let-7 is required for maximum inhibition of Dicer cleavage for a least one member of the let-7 family and may be important for orchestrating the activity of the several factors that regulate let-7 biogenesis.


Subject(s)
MicroRNAs/metabolism , RNA Precursors/metabolism , RNA-Binding Proteins/metabolism , Binding Sites , Humans , MicroRNAs/chemistry , Protein Structure, Tertiary , RNA Precursors/chemistry , RNA-Binding Proteins/chemistry , Ribonuclease III/metabolism
17.
Biochemistry ; 53(1): 258-69, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24325625

ABSTRACT

Substrate recognition by the Neurospora Varkud satellite ribozyme depends on the formation of a magnesium-dependent kissing-loop interaction between the stem-loop I (SLI) substrate and stem-loop V (SLV) of the catalytic domain. From mutagenesis studies, it has been established that this I/V kissing-loop interaction involves three Watson-Crick base pairs and is associated with a structural rearrangement of the SLI substrate that facilitates catalysis. Here, we report the NMR structural characterization of this I/V kissing-loop using isolated stem-loops. NMR studies were performed on different SLI/SLV complexes containing a common SLV and shiftable, preshifted, or double-stranded SLI variants. These studies confirm the presence of three Watson-Crick base pairs at the kissing-loop junction and provide evidence for the structural rearrangement of shiftable SLI variants upon SLV binding. NMR structure determination of an SLI/SLV complex demonstrates that both the SLI and SLV loops adopt U-turn structures, which facilitates intermolecular Watson-Crick base pairing. Several other interactions at the I/V interface, including base triples and base stacking, help create a continuously stacked structure. These NMR studies provide a structural basis to understand the stability of the I/V kissing-loop interaction and lead us to propose a kinetic model for substrate activation in the VS ribozyme.


Subject(s)
Endoribonucleases/chemistry , Nucleic Acid Conformation , RNA, Catalytic/chemistry , Base Pairing , Base Sequence , Catalytic Domain/genetics , Kinetics , Neurospora/genetics , Nuclear Magnetic Resonance, Biomolecular
18.
Biochemistry ; 53(3): 579-90, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24364590

ABSTRACT

Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.


Subject(s)
Cations, Divalent/metabolism , Endoribonucleases/metabolism , Magnesium/metabolism , RNA, Catalytic/metabolism , RNA, Fungal/genetics , Base Sequence , Cadmium/metabolism , Catalytic Domain , Endoribonucleases/chemistry , Manganese/metabolism , Neurospora/genetics , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , RNA, Catalytic/chemistry
19.
Structure ; 21(11): 2014-24, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24139988

ABSTRACT

Like other acidic transactivation domains (TAD), the minimal TAD from the erythroid-specific transcription factor EKLF (EKLFTAD) has been shown to contribute both to its transcriptional activity as well as to its ubiquitin(UBI)-mediated degradation. In this article, we examine the activation-degradation role of the acidic TAD of EKLF and demonstrate that the first 40 residues (EKLFTAD1) within this region form a noncovalent interaction with UBI. Nuclear magnetic resonance (NMR) structural studies of an EKLFTAD1-UBI complex show that EKLFTAD1 adopts a 14-residue α helix that forms the recognition interface with UBI in a similar manner as the UBI-interacting helix of Rabex5. We also identify a similar interaction between UBI and the activation-degradation region of SREBP1a, but not with the activation-degradation regions of p53, GAL4, and VP16. These results suggest that select activation-degradation regions like the ones found in EKLF and SREBP1a function in part through their ability to form noncovalent interactions with UBI.


Subject(s)
Kruppel-Like Transcription Factors/chemistry , Ubiquitin/chemistry , Amino Acid Substitution , Binding Sites , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Kruppel-Like Transcription Factors/genetics , Models, Molecular , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Quaternary , Protein Structure, Secondary , Ubiquitin/genetics
20.
RNA ; 19(7): 1003-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23657939

ABSTRACT

Affinity purification of RNA using the ARiBo tag technology currently provides an ideal approach to quickly prepare RNA with 3' homogeneity. Here, we explored strategies to also ensure 5' homogeneity of affinity-purified RNAs. First, we systematically investigated the effect of starting nucleotides on the 5' heterogeneity of a small SLI RNA substrate from the Neurospora VS ribozyme purified from an SLI-ARiBo precursor. A series of 32 SLI RNA sequences with variations in the +1 to +3 region was produced from two T7 promoters (class III consensus and class II 2.5) using either the wild-type T7 RNA polymerase or the P266L mutant. Although the P266L mutant helps decrease the levels of 5'-sequence heterogeneity in several cases, significant levels of 5' heterogeneity (≥1.5%) remain for transcripts starting with GGG, GAG, GCG, GGC, AGG, AGA, AAA, ACA, AUA, AAC, ACC, AUC, and AAU. To provide a more general approach to purifying RNA with 5' homogeneity, we tested the suitability of using a small CRISPR RNA stem-loop at the 5' end of the SLI-ARiBo RNA. Interestingly, we found that complete cleavage of the 5'-CRISPR tag with the Cse3 endoribonuclease can be achieved quickly from CRISPR-SLI-ARiBo transcripts. With this procedure, it is possible to generate SLI-ARiBo RNAs starting with any of the four standard nucleotides (G, C, A, or U) involved in either a single- or a double-stranded structure. Moreover, the 5'-CRISPR-based strategy can be combined with affinity purification using the 3'-ARiBo tag for quick purification of RNA with both 5' and 3' homogeneity.


Subject(s)
Bacteriophage T7/genetics , Chromatography, Affinity/methods , DNA-Directed RNA Polymerases/chemistry , Neurospora/genetics , RNA, Spliced Leader/isolation & purification , RNA, Viral/isolation & purification , Viral Proteins/chemistry , Affinity Labels/chemistry , Bacteriophage T7/chemistry , Cloning, Molecular , DNA-Directed RNA Polymerases/genetics , Genetic Heterogeneity , Inverted Repeat Sequences , Neurospora/chemistry , Nucleic Acid Conformation , Plasmids/chemistry , Plasmids/genetics , Promoter Regions, Genetic , RNA Cleavage , RNA Stability , RNA, Catalytic/chemistry , RNA, Catalytic/genetics , RNA, Fungal/chemistry , RNA, Fungal/genetics , RNA, Fungal/isolation & purification , RNA, Spliced Leader/chemistry , RNA, Spliced Leader/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Thermus thermophilus/chemistry , Thermus thermophilus/genetics , Transcription, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL