Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
3.
Pediatr Dermatol ; 41(2): 289-291, 2024.
Article in English | MEDLINE | ID: mdl-38018302

ABSTRACT

A 6-year-old boy with multiple capillary malformations of the port-wine birthmark (PWB) type on the right leg since birth presented with a varicose vein and segmental overgrowth of the affected leg. Genetic testing on affected skin confirmed the presence of a somatic novel pathogenic HRAS 30 bp in-frame duplication/insertion in the switch II domain. This case illustrates the phenotypic overlap of different genotypes and shows that somatic HRAS pathogenic variants, especially in-frame duplications/insertions, must be added to the list of the underlying causes in capillary malformations.


Subject(s)
Abnormalities, Multiple , Capillaries/abnormalities , Port-Wine Stain , Vascular Malformations , Male , Child , Humans , Mutation , Port-Wine Stain/genetics , Vascular Malformations/genetics , Abnormalities, Multiple/pathology , Proto-Oncogene Proteins p21(ras)/genetics
4.
Biol Psychiatry ; 95(2): 161-174, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37704042

ABSTRACT

BACKGROUND: 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS: Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS: Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS: Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Humans , Intellectual Disability/genetics , Actins/genetics , Actins/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Polymerization , Adaptor Proteins, Signal Transducing/genetics , Fragile X Mental Retardation Protein/metabolism
5.
Eur J Endocrinol ; 189(3): 402-408, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37713609

ABSTRACT

OBJECTIVE: The c.1998delinsTTCT variant in the RET gene (codon 666) is linked to medullary thyroid carcinoma in Belgium. We aimed to study the clinical phenotype and the age-dependent penetrance in predictive variant carriers. DESIGN: Retrospective study of index patients and predictive variant carriers, identified through familial cascade testing between 2001 and 2020. RESULTS: The total cohort comprised 119 patients: 15 index patients, 102 heterozygous, and 2 homozygous predictive variant carriers. Among heterozygous carriers, high suspicion of clinical disease was present in 25 patients at initial evaluation and in 3 patients during follow-up. No high suspicion of clinical disease was observed during surveillance in 56 patients, and 18 patients did not proceed to screening for clinical disease. Compared to index patients, surgically treated heterozygous predictive variant carriers had a lower presurgical basal calcitonin, a lower disease stage, less need for adjuvant therapy, and higher chances of remission. In heterozygous carriers, median age at developing high suspicion of disease is 52 years (range 7-75), with a predicted penetrance of 62% (9% SE) at the age of 70 years. Two patients were identified with pheochromocytoma and 1 patient with primary hyperparathyroidism. The 2 homozygous predictive variant carriers presented with higher disease severity at first clinical evaluation. CONCLUSION: The c.1998delinsTTCT variant in the RET gene is pathogenic and associated with a moderate risk for medullary thyroid carcinoma and rarely with other multiple endocrine neoplasia type 2A (MEN2A) manifestations. Active surveillance is a possible option in heterozygous gene carriers with a negative first clinical evaluation.


Subject(s)
Germ Cells , Oncogenes , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Belgium/epidemiology , Cohort Studies , Retrospective Studies , Proto-Oncogene Proteins c-ret/genetics
7.
Genet Med ; 25(7): 100835, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36999555

ABSTRACT

PURPOSE: Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder. METHODS: Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae. RESULTS: We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans. CONCLUSION: This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.


Subject(s)
Classical Lissencephalies and Subcortical Band Heterotopias , Intellectual Disability , Lissencephaly , Neurodevelopmental Disorders , Humans , Animals , Mice , Brain/abnormalities , Lissencephaly/genetics , Intellectual Disability/genetics , 14-3-3 Proteins/genetics
8.
iScience ; 26(2): 106096, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818284

ABSTRACT

Malignant peripheral nerve sheath tumors (MPNSTs) are soft-tissue sarcomas of the peripheral nervous system that develop either sporadically or in the context of neurofibromatosis type 1 (NF1). MPNST diagnosis can be challenging and treatment outcomes are poor. We present here a resource consisting of the genomic characterization of 9 widely used human MPNST cell lines for their use in translational research. NF1-related cell lines recapitulated primary MPNST copy number profiles, exhibited NF1, CDKN2A, and SUZ12/EED tumor suppressor gene (TSG) inactivation, and presented no gain-of-function mutations. In contrast, sporadic cell lines collectively displayed different TSG inactivation patterns and presented kinase-activating mutations, fusion genes, altered mutational frequencies and COSMIC signatures, and different methylome-based classifications. Cell lines re-classified as melanomas and other sarcomas exhibited a different drug-treatment response. Deep genomic analysis, methylome-based classification, and cell-identity marker expression, challenged the identity of common MPNST cell lines, opening an opportunity to revise MPNST differential diagnosis.

9.
Eur J Hum Genet ; 31(4): 461-468, 2023 04.
Article in English | MEDLINE | ID: mdl-36747006

ABSTRACT

Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/genetics , Mutation, Missense , Carrier Proteins/genetics , Ubiquitin-Protein Ligases/genetics
10.
Nat Commun ; 14(1): 763, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36808152

ABSTRACT

Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.


Subject(s)
Drosophila Proteins , Sterol Regulatory Element Binding Proteins , Animals , Sterol Regulatory Element Binding Proteins/metabolism , NADP/metabolism , Drosophila/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sleep , Sterol Regulatory Element Binding Protein 2/metabolism , Drosophila Proteins/metabolism , Fragile X Mental Retardation Protein
11.
EClinicalMedicine ; 56: 101818, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36684394

ABSTRACT

Background: Neurofibromatosis type 1 (NF1) is a multisystem genetic disorder, predisposing development of benign and malignant tumours. Given the oncogenic potential, long-term surveillance is important in patients with NF1. Proposals for NF1 care and its specific manifestations have been developed, but lack integration within routine care. This guideline aims to assimilate available information on NF1 associated tumours (based on evidence and/or expert opinion) to assist healthcare professionals in undertaking tumour surveillance of NF1 individuals. Methods: By comprehensive literature review, performed March 18th 2020, guidelines were developed by a NF1 expert group and patient representatives, conversant with clinical care of the wide NF1 disease spectrum. We used a modified Delphi procedure to overcome issues of variability in recommendations for specific (national) health care settings, and to deal with recommendations based on indirect (scarce) evidence. Findings: We defined proposals for personalised and targeted tumour management in NF1, ensuring appropriate care for those in need, whilst reducing unnecessary intervention. We also incorporated the tumour-related psychosocial and quality of life impact of NF1. Interpretation: The guideline reflects the current care for NF1 in Europe. They are not meant to be prescriptive and may be adjusted to local available resources at the treating centre, both within and outside EU countries. Funding: This guideline has been supported by the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS). ERN GENTURIS is funded by the European Union. DGE is supported by the Manchester NIHRBiomedical Research Centre (IS-BRC-1215-20007).

12.
Hum Reprod ; 38(3): 511-519, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36625546

ABSTRACT

STUDY QUESTION: Can long-read amplicon sequencing be beneficial for preclinical preimplantation genetic testing (PGT) workup in couples with a de novo pathogenic variant in one of the prospective parents? SUMMARY ANSWER: Long-read amplicon sequencing represents a simple, rapid and cost-effective preclinical PGT workup strategy that provides couples with de novo pathogenic variants access to universal genome-wide haplotyping-based PGT programs. WHAT IS KNOWN ALREADY: Universal PGT combines genome-wide haplotyping and copy number profiling to select embryos devoid of both familial pathogenic variants and aneuploidies. However, it cannot be directly applied in couples with a de novo pathogenic variant in one of the partners due to the absence of affected family members required for phasing the disease-associated haplotype. STUDY DESIGN, SIZE, DURATION: This is a prospective study, which includes 32 families that were enrolled in the universal PGT program at the University Hospital of Leuven between 2018 and 2022. We implemented long-read amplicon sequencing during the preclinical PGT workup to deduce the parental origin of the disease-associated allele in the affected partner, which can then be traced in embryos during clinical universal PGT cycles. PARTICIPANTS/MATERIALS, SETTING, METHODS: To identify the parental origin of the disease-associated allele, genomic DNA from the carrier of the de novo pathogenic variant and his/her parent(s) was used for preclinical PGT workup. Primers flanking the de novo variant upstream and downstream were designed for each family. Following long-range PCR, amplicons that ranged 5-10 kb in size, were sequenced using Pacific Bioscience and/or Oxford Nanopore platforms. Next, targeted variant calling and haplotyping were performed to identify parental informative single-nucleotide variants (iSNVs) linked to the de novo mutation. Following the preclinical PGT workup, universal PGT via genome-wide haplotyping was performed for couples who proceeded with clinical PGT cycle. In parallel, 13 trophectoderm (TE) biopsies from three families that were analyzed by universal PGT, were also used for long-read amplicon sequencing to explore this approach for embryo direct mutation detection coupled with targeted long-read haplotyping. MAIN RESULTS AND THE ROLE OF CHANCE: The parental origin of the mutant allele was identified in 24/32 affected individuals during the preclinical PGT workup stage, resulting in a 75% success rate. On average, 5.95 iSNVs (SD = 4.5) were detected per locus of interest, and the average distance of closest iSNV to the de novo variant was ∼1750 bp. In 75% of those cases (18/24), the de novo mutation occurred on the paternal allele. In the remaining eight families, the risk haplotype could not be established due to the absence of iSNVs linked to the mutation or inability to successfully target the region of interest. During the time of the study, 12/24 successfully analyzed couples entered the universal PGT program, and three disease-free children have been born. In parallel to universal PGT analysis, long-read amplicon sequencing of 13 TE biopsies was also performed, confirming the segregation of parental alleles in the embryo and the results of the universal PGT. LIMITATIONS, REASONS FOR CAUTION: The main limitation of this approach is that it remains targeted with the need to design locus-specific primers. Because of the restricted size of target amplicons, the region of interest may also remain non-informative in the absence of iSNVs. WIDER IMPLICATIONS OF THE FINDINGS: Targeted haplotyping via long-read amplicon sequencing, particularly using Oxford Nanopore Technologies, provides a valuable alternative for couples with de novo pathogenic variants that allows access to universal PGT. Moreover, the same approach can be used for direct mutation analysis in embryos, as a second line confirmation of the preclinical PGT result or as a potential alternative PGT procedure in couples, where additional family members are not available. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by KU Leuven funding (no. C1/018 to J.R.V.) and Fonds Wetenschappelijk Onderzoek (1241121N to O.T.). J.R.V. is co-inventor of a patent ZL910050-PCT/EP2011/060211-WO/2011/157846 'Methods for haplotyping single-cells' and ZL913096-PCT/EP2014/068315-WO/2015/028576 'Haplotyping and copy number typing using polymorphic variant allelic frequencies' licensed to Agilent Technologies. All other authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Preimplantation Diagnosis , Humans , Pregnancy , Child , Female , Male , Prospective Studies , Preimplantation Diagnosis/methods , Genetic Testing/methods , Aneuploidy , Mutation
13.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430143

ABSTRACT

Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.


Subject(s)
Mental Retardation, X-Linked , Humans , Facies , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Carrier Proteins/metabolism
14.
Eur J Med Genet ; 65(12): 104632, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36270489

ABSTRACT

BACKGROUND: Pathogenic PTEN germline variants cause PTEN Hamartoma Tumor Syndrome (PHTS), a rare disease with a variable genotype and phenotype. Knowledge about these spectra and genotype-phenotype associations could help diagnostics and potentially lead to personalized care. Therefore, we assessed the PHTS genotype and phenotype spectrum in a large cohort study. METHODS: Information was collected of 510 index patients with pathogenic or likely pathogenic (LP/P) PTEN variants (n = 467) or variants of uncertain significance. Genotype-phenotype associations were assessed using logistic regression analyses adjusted for sex and age. RESULTS: At time of genetic testing, the majority of children (n = 229) had macrocephaly (81%) or developmental delay (DD, 61%), and about half of the adults (n = 238) had cancer (51%), macrocephaly (61%), or cutaneous pathology (49%). Across PTEN, 268 LP/P variants were identified, with exon 5 as hotspot. Missense variants (n = 161) were mainly located in the phosphatase domain (PD, 90%) and truncating variants (n = 306) across all domains. A trend towards 2 times more often truncating variants was observed in adults (OR = 2.3, 95%CI = 1.5-3.4) and patients with cutaneous pathology (OR = 1.6, 95%CI = 1.1-2.5) or benign thyroid pathology (OR = 2.0, 95%CI = 1.1-3.5), with trends up to 2-4 times more variants in PD. Whereas patients with DD (OR = 0.5, 95%CI = 0.3-0.9) or macrocephaly (OR = 0.6, 95%CI = 0.4-0.9) had about 2 times less often truncating variants compared to missense variants. In DD patients these missense variants were often located in domain C2. CONCLUSION: The PHTS phenotypic diversity may partly be explained by the PTEN variant coding effect and the combination of coding effect and domain. PHTS patients with early-onset disease often had missense variants, and those with later-onset disease often truncating variants.


Subject(s)
Hamartoma Syndrome, Multiple , Megalencephaly , Humans , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/pathology , Cohort Studies , Genetic Association Studies , PTEN Phosphohydrolase/genetics , Megalencephaly/genetics , Phenotype
15.
Eur J Hum Genet ; 30(12): 1323-1330, 2022 12.
Article in English | MEDLINE | ID: mdl-35896702

ABSTRACT

Non-invasive prenatal testing has been introduced for the detection of Trisomy 13, 18, and 21. Using genome-wide screening also other "rare" autosomal trisomies (RATs) can be detected with a frequency about half the frequency of the common trisomies in the large population-based studies. Large prospective studies and clear clinical guidelines are lacking to provide adequate counseling and management to those who are confronted with a RAT as a healthcare professional or patient. In this review we reviewed the current knowledge of the most common RATs. We compiled clinical relevant parameters such as incidence, meiotic or mitotic origin, the risk of fetal (mosaic) aneuploidy, clinical manifestations of fetal mosaicism for a RAT, the effect of confined placental mosaicism on placental function and the risk of uniparental disomy (UPD). Finally, we identified gaps in the knowledge on RATs and highlight areas of future research. This overview may serve as a first guide for prenatal management for each of these RATs.


Subject(s)
Placenta , Trisomy , Female , Pregnancy , Humans , Trisomy/diagnosis , Trisomy/genetics , Prospective Studies , Mosaicism , Uniparental Disomy , Prenatal Diagnosis
16.
Genet Med ; 24(9): 1967-1977, 2022 09.
Article in English | MEDLINE | ID: mdl-35674741

ABSTRACT

PURPOSE: Neurofibromatosis type 2 (NF2) and schwannomatosis (SWN) are genetically distinct tumor predisposition syndromes with overlapping phenotypes. We sought to update the diagnostic criteria for NF2 and SWN by incorporating recent advances in genetics, ophthalmology, neuropathology, and neuroimaging. METHODS: We used a multistep process, beginning with a Delphi method involving global disease experts and subsequently involving non-neurofibromatosis clinical experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing NF2 and SWN. These criteria incorporate mosaic forms of these conditions. In addition, we recommend updated nomenclature for these disorders to emphasize their phenotypic overlap and to minimize misdiagnosis with neurofibromatosis type 1. CONCLUSION: The updated criteria for NF2 and SWN incorporate clinical features and genetic testing, with a focus on using molecular data to differentiate the 2 conditions. It is likely that continued refinement of these new criteria will be necessary as investigators study the diagnostic properties of the revised criteria and identify new genes associated with SWN. In the revised nomenclature, the term "neurofibromatosis 2" has been retired to improve diagnostic specificity.


Subject(s)
Neurilemmoma , Neurofibromatoses , Neurofibromatosis 1 , Neurofibromatosis 2 , Skin Neoplasms , Consensus , Humans , Neurilemmoma/diagnosis , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/diagnosis , Neurofibromatoses/genetics , Neurofibromatosis 1/genetics , Neurofibromatosis 2/diagnosis , Neurofibromatosis 2/genetics , Skin Neoplasms/genetics
17.
Eur J Hum Genet ; 30(7): 812-817, 2022 07.
Article in English | MEDLINE | ID: mdl-35361920

ABSTRACT

A Guideline Group (GG) was convened from multiple specialties and patients to develop the first comprehensive schwannomatosis guideline. The GG undertook thorough literature review and wrote recommendations for treatment and surveillance. A modified Delphi process was used to gain approval for recommendations which were further altered for maximal consensus. Schwannomatosis is a tumour predisposition syndrome leading to development of multiple benign nerve-sheath non-intra-cutaneous schwannomas that infrequently affect the vestibulocochlear nerves. Two definitive genes (SMARCB1/LZTR1) have been identified on chromosome 22q centromeric to NF2 that cause schwannoma development by a 3-event, 4-hit mechanism leading to complete inactivation of each gene plus NF2. These genes together account for 70-85% of familial schwannomatosis and 30-40% of isolated cases in which there is considerable overlap with mosaic NF2. Craniospinal MRI is generally recommended from symptomatic diagnosis or from age 12-14 if molecularly confirmed in asymptomatic individuals whose relative has schwannomas. Whole-body MRI may also be deployed and can alternate with craniospinal MRI. Ultrasound scans are useful in limbs where typical pain is not associated with palpable lumps. Malignant-Peripheral-Nerve-Sheath-Tumour-MPNST should be suspected in anyone with rapidly growing tumours and/or functional loss especially with SMARCB1-related schwannomatosis. Pain (often intractable to medication) is the most frequent symptom. Surgical removal, the most effective treatment, must be balanced against potential loss of function of adjacent nerves. Assessment of patients' psychosocial needs should be assessed annually as well as review of pain/pain medication. Genetic diagnosis and counselling should be guided ideally by both blood and tumour molecular testing.


Subject(s)
Neurilemmoma , Neurofibromatoses , Skin Neoplasms , Adolescent , Child , Humans , Neurilemmoma/diagnosis , Neurilemmoma/genetics , Neurilemmoma/therapy , Neurofibromatoses/diagnosis , Neurofibromatoses/genetics , Neurofibromatoses/therapy , Pain , Skin Neoplasms/diagnosis , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Transcription Factors/genetics
18.
Eur J Med Genet ; 64(9): 104281, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34237445

ABSTRACT

Neurofibromatosis (NF) is the umbrella term for neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) and schwannomatosis (SWN). EU-PEARL aims to create a framework for platform trials in NF. The aim of this systematic review is to create an overview of recent clinical drug trials in NF, to identify learning points to guide development of the framework. We searched Embase, Medline and Cochrane register of trials on October 1, 2020 for publications of clinical drug trials in NF patients. We excluded publications published before 2010, systematic reviews, secondary analyses and studies with <10 patients. Data was extracted on manifestations studied, study design, phase, number of participating centres and population size. Full-text review resulted in 42 articles: 31 for NF1, 11 for NF2, none for SWN. Most NF1 trials focused on plexiform neurofibromas (32%). Trials in NF2 solely studied vestibular schwannomas. In NF1, single-arm trials (58%) were most common, and the majority was phase II (74%). For NF2 most trials were single-arm (55%) and exclusively phase II. For both diseases, trials were predominantly single-country and included five centres or less. Study population sizes were small, with the majority including ≤50 patients (74%). In conclusion, NF research is dominated by studies on a limited number out of the wide range of manifestations. We need more trials for cutaneous manifestations and high-grade gliomas in NF1, manifestations other than vestibular schwannoma in NF2 and trials for SWN. Drug development in NF may profit from innovative trials on multiple interventions and increased international collaboration.


Subject(s)
Clinical Trials as Topic/standards , Neurofibromatoses/drug therapy , Clinical Trials as Topic/statistics & numerical data , Humans , Practice Guidelines as Topic
19.
Mol Autism ; 12(1): 53, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34311771

ABSTRACT

BACKGROUND: RASopathies are a group of disorders that result from mutations in genes coding for proteins involved in regulating the Ras-MAPK signaling pathway, and have an increased incidence of autism spectrum disorder (ASD). Legius syndrome is a rare RASopathy caused by loss-of-function mutations in the SPRED1 gene. The patient phenotype is similar to, but milder than, Neurofibromatosis type 1-another RASopathy caused by loss-of-function mutations in the NF1 gene. RASopathies exhibit increased activation of Ras-MAPK signaling and commonly manifest with cognitive impairments and ASD. Here, we investigated if a Spred1-/- mouse model for Legius syndrome recapitulates ASD-like symptoms, and whether targeting the Ras-MAPK pathway has therapeutic potential in this RASopathy mouse model. METHODS: We investigated social and communicative behaviors in Spred1-/- mice and probed therapeutic mechanisms underlying the observed behavioral phenotypes by pharmacological targeting of the Ras-MAPK pathway with the MEK inhibitor PD325901. RESULTS: Spred1-/- mice have robust increases in social dominance in the automated tube test and reduced adult ultrasonic vocalizations during social communication. Neonatal ultrasonic vocalization was also altered, with significant differences in spectral properties. Spred1-/- mice also exhibit impaired nesting behavior. Acute MEK inhibitor treatment in adulthood with PD325901 reversed the enhanced social dominance in Spred1-/- mice to normal levels, and improved nesting behavior in adult Spred1-/- mice. LIMITATIONS: This study used an acute treatment protocol to administer the drug. It is not known what the effects of longer-term treatment would be on behavior. Further studies titrating the lowest dose of this drug that is required to alter Spred1-/- social behavior are still required. Finally, our findings are in a homozygous mouse model, whereas patients carry heterozygous mutations. These factors should be considered before any translational conclusions are drawn. CONCLUSIONS: These results demonstrate for the first time that social behavior phenotypes in a mouse model for RASopathies (Spred1-/-) can be acutely reversed. This highlights a key role for Ras-MAPK dysregulation in mediating social behavior phenotypes in mouse models for ASD, suggesting that proper regulation of Ras-MAPK signaling is important for social behavior.


Subject(s)
Autism Spectrum Disorder , Neurofibromin 1 , Adaptor Proteins, Signal Transducing/genetics , Adult , Animals , Humans , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Neurofibromin 1/genetics , Phenotype , Social Behavior
20.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34314705

ABSTRACT

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Subject(s)
Developmental Disabilities/genetics , Drosophila Proteins/genetics , Eye Diseases, Hereditary/genetics , Intellectual Disability/genetics , Karyopherins/genetics , Musculoskeletal Abnormalities/genetics , beta Karyopherins/genetics , ran GTP-Binding Protein/genetics , Alleles , Amino Acid Sequence , Animals , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Female , Gene Dosage , Gene Expression Regulation, Developmental , Genome, Human , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Intellectual Disability/pathology , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Male , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Mutation , Neurons/metabolism , Neurons/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Whole Genome Sequencing , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...