Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(24): 24919-24935, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38051272

ABSTRACT

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.


Subject(s)
Nanostructures , Nanotubes, Carbon , Mice , Animals , Nanotubes, Carbon/toxicity , Nanostructures/toxicity , Lung/pathology , Boron Compounds/toxicity , Boron Compounds/chemistry
2.
Chemosphere ; 335: 139140, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285981

ABSTRACT

Due to their properties, graphene-based nanomaterials (GBMs) are triggering a great interest leading to an increase of their global production and use in new applications. As a consequence, their release into the environment is expected to increase in the next years. When considering the current knowledge in the evaluation of GBMs ecotoxic potential, studies aiming to evaluate the hazard associated to these nanomaterials towards marine species and particularly considering potential interactions with other environmental pollutants such as metals are scarce. Here we evaluated the embryotoxic potential of GBMs, which include graphene oxide (GO) and its reduced form (rGO), both individually and in combination with copper (Cu) as a referent toxicant, towards early life stages of the Pacific oyster through the use of a standardized method (NF ISO 17244). We found that following exposure to Cu, dose-dependent decrease in the proportion of normal larvae was recorded with an Effective Concentration leading to the occurrence of 50% of abnormal larvae (EC50) of 13.85 ± 1.21 µg/L. Interestingly, the presence of GO at a non-toxic dose of 0.1 mg/L decreased the Cu EC50 to 12.04 ± 0.85 µg/L while it increased to 15.91 ± 1.57 µg/L in presence of rGO. Based on the measurement of copper adsorption, the obtained results suggest that GO enhances Cu bioavailability, potentially modifying its toxic pathways, while rGO mitigates Cu toxicity by decreasing its bioavailability. This research underscores the need to characterize the risk associated to GBMs interactions with other aquatic contaminants and supports the adoption of a safer-by-design strategy using rGO in marine environments. This would contribute to minimize the potential adverse effects on aquatic species and to reduce the risk for economic activities associated to coastal environments.


Subject(s)
Graphite , Ostreidae , Water Pollutants, Chemical , Animals , Copper/toxicity , Graphite/toxicity , Larva , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
3.
Langmuir ; 38(28): 8545-8554, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35793138

ABSTRACT

The decoration of carbon nanotubes (CNTs) by metal nanoparticles (NPs) combines the advantages of a high specific surface material with catalytic properties of metal nanocrystals. Little work has been devoted to the decoration of CNTs with copper NPs, and no evidence of copper atomic decoration of CNTs has shown up until now. Herein, we demonstrate that the strong acidic oxidation of double-walled CNTs (dwCNTs) is very efficient for the decoration of the carbon surface by copper NPs and atoms. This treatment severely degraded the CNT walls and generated a large amount of disordered sp3 carbon. This amorphous carbon film bears many chemically active functions like carboxyl and hydroxyl ones. In such conditions, the CNT walls behave as very efficient ligands for the stabilization of copper obtained by the thermolysis of the mesityl precursor in organic solution under mild dihydrogen pressure. In addition to copper NPs, we evidenced the presence of a regular coverage with copper atoms over the dwCNTs. This nanocomposite catalyzes the quantitative synthesis of propargylamines via one A3-type coupling reaction. Five consecutive catalytic cycles with 100% yield could be performed with no loss of activity, and the combination of Cu supported on dwCNTs allows a facile recycling of the catalytic material.

SELECTION OF CITATIONS
SEARCH DETAIL
...