Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32132173

ABSTRACT

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Subject(s)
Apolipoproteins A/antagonists & inhibitors , Apolipoproteins A/metabolism , Fibrin/metabolism , Kringles/drug effects , Small Molecule Libraries/pharmacology , Amino Acid Sequence , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Protein Binding , Protein Domains , Sequence Homology
2.
Sci Rep ; 4: 5318, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24937703

ABSTRACT

Lipoprotein (a) [Lp(a)] is a low density lipoprotein (LDL) with one apolipoprotein (a) molecule bound to the apolipoprotein B-100 of LDL. Lp(a) is an independent risk factor for cardiovascular disease (CVD). However, the relationship of Lp(a) to diabetes and metabolic syndrome, both known for increased CVD risk, is controversial. In a population based study on type two diabetes mellitus (T2DM) development in women, Lp(a) plasma levels showed the well known skewed distribution without any relation to diabetes or impaired glucose tolerance. A modified clot lysis assay on a subset of 274 subjects showed significantly increased clot lysis times in T2DM subjects, despite inhibition of PAI-1 and TAFI. Lp(a) plasma levels significantly increased the maximal peak height of the clot lysis curve, indicating a change in clot structure. In this study Lp(a) is not related to the development of T2DM but may affect clot structure ex vivo without a prolongation of the clot lysis time.


Subject(s)
Diabetes Mellitus, Type 2/blood , Lipoprotein(a)/blood , Aged , Analysis of Variance , Blood Coagulation , Blood Coagulation Tests , Carboxypeptidase B2/blood , Female , Fibrinolysis , Humans , Middle Aged , Plasminogen Activator Inhibitor 1/metabolism
3.
J Biol Chem ; 288(2): 873-85, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23155046

ABSTRACT

A novel class of small molecule inhibitors for plasminogen activator inhibitor type 1 (PAI-1), represented by AZ3976, was identified in a high throughput screening campaign. AZ3976 displayed an IC(50) value of 26 µm in an enzymatic chromogenic assay. In a plasma clot lysis assay, the compound was active with an IC(50) of 16 µm. Surprisingly, AZ3976 did not bind to active PAI-1 but bound to latent PAI-1 with a K(D) of 0.29 µm at 35 °C and a binding stoichiometry of 0.94, as measured by isothermal calorimetry. Reversible binding was confirmed by surface plasmon resonance direct binding experiments. The x-ray structure of AZ3976 in complex with latent PAI-1 was determined at 2.4 Å resolution. The inhibitor was bound in the flexible joint region with the entrance to the cavity located between α-helix D and ß-strand 2A. A set of surface plasmon resonance experiments revealed that AZ3976 inhibited PAI-1 by enhancing the latency transition of active PAI-1. Because AZ3976 only had measurable affinity for latent PAI-1, we propose that its mechanism of inhibition is based on binding to a small fraction in equilibrium with active PAI-1, a latent-like prelatent form, from which latent PAI-1 is then generated more rapidly. This mode of action, with induced accelerated latency transition of active PAI-1 may, together with supporting x-ray data, provide improved opportunities for small molecule drug design in the hunt for therapeutically useful PAI-1 inhibitors.


Subject(s)
Azetidines/pharmacology , Plasminogen Activator Inhibitor 1/chemistry , Pyrimidinones/pharmacology , Animals , Azetidines/chemistry , CHO Cells , Calorimetry , Cricetinae , Cricetulus , Humans , Models, Molecular , Protein Conformation , Pyrimidinones/chemistry , Rats , Surface Plasmon Resonance , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL