Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Inherit Metab Dis ; 45(2): 353-365, 2022 03.
Article in English | MEDLINE | ID: mdl-34671987

ABSTRACT

Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Organoids , Amino Acid Metabolism, Inborn Errors/metabolism , Humans , Liver/metabolism , Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways , Organoids/metabolism
2.
Macromol Biosci ; 21(12): e2100327, 2021 12.
Article in English | MEDLINE | ID: mdl-34559943

ABSTRACT

There is a need for long-lived hepatic in vitro models to better predict drug induced liver injury (DILI). Human liver-derived epithelial organoids are a promising cell source for advanced in vitro models. Here, organoid technology is combined with biofabrication techniques, which holds great potential for the design of in vitro models with complex and customizable architectures. Here, porous constructs with human hepatocyte-like cells derived from organoids are generated using extrusion-based printing technology. Cell viability of bioprinted organoids remains stable for up to ten days (88-107% cell viability compared to the day of printing). The expression of hepatic markers, transporters, and phase I enzymes increased compared to undifferentiated controls, and is comparable to non-printed controls. Exposure to acetaminophen, a well-known hepatotoxic compound, decreases cell viability of bioprinted liver organoids to 21-51% (p < 0.05) compared to the start of exposure, and elevated levels of damage marker miR-122 are observed in the culture medium, indicating the potential use of the bioprinted constructs for toxicity testing. In conclusion, human liver-derived epithelial organoids can be combined with a biofabrication approach, thereby paving the way to create perfusable, complex constructs which can be used as toxicology- and disease-models.


Subject(s)
Bioprinting , Liver , Organoids , Printing, Three-Dimensional , Tissue Engineering , Cell Culture Techniques , Cells, Cultured , Humans , Liver/cytology , Liver/metabolism , Organoids/cytology , Organoids/metabolism
3.
Biotechnol Prog ; 35(2): e2745, 2019 03.
Article in English | MEDLINE | ID: mdl-30421867

ABSTRACT

The only cure available for Type 1 diabetes involves the transplantation of islets of Langerhans isolated from donor organs. However, success rates are relatively low. Disconnection from vasculature upon isolation and insufficient rate of revascularization upon transplantation are thought to be a major cause, as islet survival and function depend on extensive vascularization. Research has thus turned toward the development of pretransplantation culture techniques to enhance revascularization of islets, so far with limited success. With the aim to develop a technique to enhance islet revascularization, this work proposes a method to isolate and culture pancreas-derived blood vessels. Using a mild multistep digestion method, pancreatic blood vessels were retrieved from whole murine pancreata and cultured in collagen Type 1. After 8 days, 50% of tissue explants had formed anastomosed microvessels which extended up to 300 µm from the explant tissue and expressed endothelial cell marker CD31 but not ductal marker CK19. Cocultures with islets of Langerhans revealed survival of both tissues and insulin expression by islets up to 8 days post-embedding. Microvessels were frequently found to encapsulate islets, however no islet penetration could be detected. This study reports for the first time the isolation and culture of pancreatic blood vessels. The methods and results presented in this work provide a novel explant culture model for angiogenesis and tissue engineering research with relevance to islet biology. It opens the door for in vivo validation of the potential of these pancreatic blood vessel explants to improve islet transplantation therapies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2745, 2019.


Subject(s)
Islets of Langerhans/cytology , Pancreas/cytology , Animals , Cell Survival , Cells, Cultured , Coculture Techniques , Female , Fluorescent Dyes/chemistry , Islets of Langerhans/diagnostic imaging , Mice , Optical Imaging , Pancreas/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...