Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26788, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455583

ABSTRACT

To mitigate the effects of climate change, a significant percentage of future energy generation is set to come from renewable energy sources. This has led to a substantial increase of installed offshore wind in the North Sea in the last years (28 GW in 2021) and is projected to further accelerate to an installed capacity of 212 GW by 2050. Increasing the renewable energy grid penetration brings challenges, including 1) limitations in space availability and 2) the reliability of renewable energy systems in terms of grid balancing. In the North Sea, maritime space is getting scarce and the projected upscaling of offshore wind is putting pressure on the chemical-, biological, and physical balance of the marine ecosystem. Without economically viable large-scale storage systems, a renewable energy system focused on one intermittent source does not provide reliable baseload- and energy demand compliance. By integrating different supplementary offshore renewable energy sources into multi-source parks output becomes smoother, while the energy yield per area increases. Despite multiple studies stating the benefits of multi-source energy parks of either wind and wave energy or wind and PV energy, no study has been conducted on the co-location of all three offshore renewables. This study combines and analyzes the three offshore renewable energy sources: wave-, offshore PV- and wind energy in the example of Ten Noorden van de Waddeneilanden, a future wind farm north of the Dutch Wadden Islands. The additional renewables are allocated within the wind turbine spacing, taking into account safety zones and maintenance corridors. Co-location of these renewables increases the extracted energy density by 22%, making more efficient use of the limited available marine space. Moreover, the park output becomes smoother as the yearly-averaged coefficient of variation decreases by 13%, the capacity factor with respect to the export cable increases by 19%, and the hours where the output of the park is below 20% of the export cable capacity decreases by 86.5%.

2.
Nat Commun ; 14(1): 2311, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085475

ABSTRACT

As renewed interest in human space-exploration intensifies, a coherent and modernized strategy for mission design and planning has become increasingly crucial. Biotechnology has emerged as a promising approach to increase resilience, flexibility, and efficiency of missions, by virtue of its ability to effectively utilize in situ resources and reclaim resources from waste streams. Here we outline four primary mission-classes on Moon and Mars that drive a staged and accretive biomanufacturing strategy. Each class requires a unique approach to integrate biomanufacturing into the existing mission-architecture and so faces unique challenges in technology development. These challenges stem directly from the resources available in a given mission-class-the degree to which feedstocks are derived from cargo and in situ resources-and the degree to which loop-closure is necessary. As mission duration and distance from Earth increase, the benefits of specialized, sustainable biomanufacturing processes also increase. Consequentially, we define specific design-scenarios and quantify the usefulness of in-space biomanufacturing, to guide techno-economics of space-missions. Especially materials emerged as a potentially pivotal target for biomanufacturing with large impact on up-mass cost. Subsequently, we outline the processes needed for development, testing, and deployment of requisite technologies. As space-related technology development often does, these advancements are likely to have profound implications for the creation of a resilient circular bioeconomy on Earth.


Subject(s)
Mars , Space Flight , Humans , Moon , Biotechnology
3.
ACS Appl Nano Mater ; 4(8): 8334-8342, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34485844

ABSTRACT

Graphene oxide (GO) has immense potential for widespread use in diverse in vitro and in vivo biomedical applications owing to its thermal and chemical resistance, excellent electrical properties and solubility, and high surface-to-volume ratio. However, development of GO-based biological nanocomposites and biosensors has been hampered by its poor intrinsic biocompatibility and difficult covalent biofunctionalization across its lattice. Many studies exploit the strategy of chemically modifying GO by noncovalent and reversible attachment of (bio)molecules or sole covalent biofunctionalization of residual moieties at the lattice edges, resulting in a low coating coverage and a largely bioincompatible composite. Here, we address these problems and present a facile yet powerful method for the covalent biofunctionalization of GO using colamine (CA) and the poly(ethylene glycol) cross-linker that results in a vast improvement in the biomolecular coating density and heterogeneity across the entire GO lattice. We further demonstrate that our biofunctionalized GO with CA as the cross-linker provides superior nonspecific biomolecule adhesion suppression with increased biomarker detection sensitivity in a DNA-biosensing assay compared to the (3-aminopropyl)triethoxysilane cross-linker. Our optimized biofunctionalization method will aid the development of GO-based in situ applications including biosensors, tissue nanocomposites, and drug carriers.

4.
PLoS One ; 16(4): e0249962, 2021.
Article in English | MEDLINE | ID: mdl-33909656

ABSTRACT

In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed. Application of self-reproducing bacteria for the extraction of resources is a promising approach to reduce these pitfalls. In this work, the bacterium Shewanella oneidensis was used to reduce three different types of Lunar and Martian regolith simulants, allowing for the magnetic extraction of iron-rich materials. The combination of bacterial treatment and magnetic extraction resulted in a 5.8-times higher quantity of iron and 43.6% higher iron concentration compared to solely magnetic extraction. The materials were 3D printed into cylinders and the mechanical properties were tested, resulting in a 400% improvement in compressive strength in the bacterially treated samples. This work demonstrates a proof of concept for the on-demand production of construction and replacement parts in space exploration.


Subject(s)
Iron/metabolism , Shewanella/metabolism , Compressive Strength , Iron/analysis , Iron/isolation & purification , Magnetics , Mars , Minerals/chemistry , Minerals/pharmacology , Moon , Printing, Three-Dimensional , Shewanella/chemistry , Shewanella/drug effects , Shewanella/growth & development , Silicon Dioxide/chemistry , Soil/chemistry
5.
ChemistryOpen ; 8(7): 888-895, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31312588

ABSTRACT

Graphene's maximized surface-to-volume ratio, high conductance, mechanical strength, and flexibility make it a promising nanomaterial. However, large-scale graphene production is typically cost-intensive. This manuscript describes a microbial reduction approach for producing graphene that utilizes the bacterium Shewanella oneidensis in combination with modern nanotechnology to enable a low-cost, large-scale production method. The bacterial reduction approach presented in this paper increases the conductance of single graphene oxide flakes as well as bulk graphene oxide sheets by 2.1 to 2.7 orders of magnitude respectively while simultaneously retaining a high surface-area-to-thickness ratio. Shewanella-mediated reduction was employed in conjunction with electron-beam lithography to reduce one surface of individual graphene oxide flakes. This methodology yielded conducting flakes with differing functionalization on the top and bottom faces. Therefore, microbial reduction of graphene oxide enables the development and up-scaling of new types of graphene-based materials and devices with a variety of applications including nano-composites, conductive inks, and biosensors, while avoiding usage of hazardous, environmentally-unfriendly chemicals.

6.
J Vis Exp ; (147)2019 05 16.
Article in English | MEDLINE | ID: mdl-31157785

ABSTRACT

Biofilms are aggregates of bacteria embedded in a self-produced spatially-patterned extracellular matrix. Bacteria within a biofilm develop enhanced antibiotic resistance, which poses potential health dangers, but can also be beneficial for environmental applications such as purification of drinking water. The further development of anti-bacterial therapeutics and biofilm-inspired applications will require the development of reproducible, engineerable methods for biofilm creation. Recently, a novel method of biofilm preparation using a modified three-dimensional (3D) printer with a bacterial ink has been developed. This article describes the steps necessary to build this efficient, low-cost 3D bioprinter that offers multiple applications in bacterially-induced materials processing. The protocol begins with an adapted commercial 3D printer in which the extruder has been replaced with a bio-ink dispenser connected to a syringe pump system enabling a controllable, continuous flow of bio-ink. To develop a bio-ink suitable for biofilm printing, engineered Escherichia coli bacteria were suspended in a solution of alginate, so that they solidify in contact with a surface containing calcium. The inclusion of an inducer chemical within the printing substrate drives expression of biofilm proteins within the printed bio-ink. This method enables 3D printing of various spatial patterns composed of discrete layers of printed biofilms. Such spatially-controlled biofilms can serve as model systems and can find applications in multiple fields that have a wide-ranging impact on society, including antibiotic resistance prevention or drinking water purification, among others.


Subject(s)
Biofilms , Bioprinting/instrumentation , Printing, Three-Dimensional , Biofilms/drug effects , Escherichia coli/drug effects , Escherichia coli/physiology , Hydrogels/pharmacology
7.
ACS Synth Biol ; 6(7): 1124-1130, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28225616

ABSTRACT

Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques. In this paper, we describe the first steps toward the 3-dimensional printing of bacterial cultures for materials production and patterning. This methodology combines the capability of bacteria to form new materials with the reproducibility and tailored approach of 3D printing systems. For this purpose, a commercial 3D printer was modified for bacterial systems, and new alginate-based bioink chemistry was developed. Printing temperature, printhead speed, and bioink extrusion rate were all adapted and customized to maximize bacterial health and spatial resolution of printed structures. Our combination of 3D printing technology with biological systems enables a sustainable approach for the production of numerous new materials.


Subject(s)
Alginates/chemistry , Bacteria , Printing/methods , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...