Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Article in English | MEDLINE | ID: mdl-38664998

ABSTRACT

Fungal anthraquinones dermocybin and dermorubin are attractive alternatives for synthetic dyes but their metabolism is largely unknown. We conducted a qualitative in vitro study to identify their metabolism using human liver microsomes and cytosol, as well as recombinant human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes. Additionally, liver microsomal and cytosolic fractions from rat, mouse and pig were used. Following incubations of the biocolourants with the enzymes in the presence of nicotinamide adenine dinucleotide phosphate, UDP-glucuronic acid, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) or S-adenosyl methionine (SAM) to enable CYP oxidation, glucuronidation, sulfonation or methylation, we observed several oxidation and conjugation metabolites for dermocybin but none for dermorubin. Human CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A7 catalysed dermocybin oxidation. The formation of dermocybin glucuronides was catalysed by human UGT1A1, 1A3, 1A7, 1A8, 1A9, 1A10 and 2B15. Human SULT1B1, 1C2 and 2A1 sulfonated dermocybin. Dermocybin oxidation was faster than conjugation in human liver microsomes. Species differences were seen in dermocybin glucuronidation between human, rat, mouse and pig. In conclusion, many CYP and conjugation enzymes metabolized dermocybin, whereas dermorubin was not metabolized in human liver fractions in vitro. The results indicate that dermocybin would be metabolized in humans in vivo.

2.
Clin Transl Sci ; 17(3): e13773, 2024 03.
Article in English | MEDLINE | ID: mdl-38515340

ABSTRACT

Our aim was to evaluate biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) function using a hypothesis-free metabolomics approach. We analyzed fasting plasma samples from 356 healthy volunteers using non-targeted metabolite profiling by liquid chromatography high-resolution mass spectrometry. Based on SLCO1B1 genotypes, we stratified the volunteers to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Linear regression analysis, and random forest (RF) and gradient boosted decision tree (GBDT) regressors were used to investigate associations of plasma metabolite features with OATP1B1 function. Of the 9152 molecular features found, 39 associated with OATP1B1 function either in the linear regression analysis (p < 10-5) or the RF or GBDT regressors (Gini impurity decrease > 0.01). Linear regression analysis showed the strongest associations with two features identified as glycodeoxycholate 3-O-glucuronide (GDCA-3G; p = 1.2 × 10-20 for negative and p = 1.7 × 10-19 for positive electrospray ionization) and one identified as glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G; p = 2.7 × 10-16). In both the RF and GBDT models, the GCDCA-3G feature showed the strongest association with OATP1B1 function, with Gini impurity decreases of 0.40 and 0.17. In RF, this was followed by one GDCA-3G feature, an unidentified feature with a molecular weight of 809.3521, and the second GDCA-3G feature. In GBDT, the second and third strongest associations were observed with the GDCA-3G features. Of the other associated features, we identified with confidence two representing lysophosphatidylethanolamine 22:5. In addition, one feature was putatively identified as pregnanolone sulfate and one as pregnenolone sulfate. These results confirm GCDCA-3G and GDCA-3G as robust OATP1B1 biomarkers in human plasma.


Subject(s)
Glucuronides , Organic Anion Transporters , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Genotype , Biomarkers
3.
Am J Clin Nutr ; 119(5): 1280-1292, 2024 May.
Article in English | MEDLINE | ID: mdl-38403167

ABSTRACT

BACKGROUND: Consumption of processed red meat has been associated with increased risk of developing type 2 diabetes (T2D), but challenges in dietary assessment call for objective intake biomarkers. OBJECTIVES: This study aimed to investigate metabolite biomarkers of meat intake and their associations with T2D risk. METHODS: Fasting plasma samples were collected from a case-control study nested within Västerbotten Intervention Program (VIP) (214 females and 189 males) who developed T2D after a median follow-up of 7 years. Panels of biomarker candidates reflecting the consumption of total, processed, and unprocessed red meat and poultry were selected from the untargeted metabolomics data collected on the controls. Observed associations were then replicated in Swedish Mammography clinical subcohort in Uppsala (SMCC) (n = 4457 females). Replicated metabolites were assessed for potential association with T2D risk using multivariable conditional logistic regression in the discovery and Cox regression in the replication cohorts. RESULTS: In total, 15 metabolites were associated with ≥1 meat group in both cohorts. Acylcarnitines 8:1, 8:2, 10:3, reflecting higher processed meat intake [r > 0.22, false discovery rate (FDR) < 0.001 for VIP and r > 0.05; FDR < 0.001 for SMCC) were consistently associated with higher T2D risk in both data sets. Conversely, lysophosphatidylcholine 17:1 and phosphatidylcholine (PC) 15:0/18:2 were associated with lower processed meat intake (r < -0.12; FDR < 0.023, for VIP and r < -0.05; FDR < 0.001, for SMCC) and with lower T2D risk in both data sets, except for PC 15:0/18:2, which was significant only in the VIP cohort. All associations were attenuated after adjustment for BMI (kg/m2). CONCLUSIONS: Consistent associations of biomarker candidates involved in lipid metabolism between higher processed red meat intake with higher T2D risk and between those reflecting lower intake with the lower risk may suggest a relationship between processed meat intake and higher T2D risk. However, attenuated associations after adjusting for BMI indicates that such a relationship may at least partly be mediated or confounded by BMI.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Humans , Female , Sweden/epidemiology , Male , Middle Aged , Case-Control Studies , Biomarkers/blood , Diet , Meat , Cohort Studies , Fasting/blood , Aged , Adult , Incidence , Risk Factors
4.
Hum Genomics ; 18(1): 11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303026

ABSTRACT

BACKGROUND: Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS: Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS: These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.


Subject(s)
Cytochrome P-450 CYP2D6 , Diosgenin , Genome-Wide Association Study , Humans , Cytochrome P-450 CYP2D6/genetics , Paroxetine/pharmacology , Biomarkers , Genotype
5.
NPJ Sci Food ; 8(1): 8, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291073

ABSTRACT

Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC-QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.

6.
Eur J Pharm Sci ; 192: 106637, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37967656

ABSTRACT

Palbociclib, a cyclin-dependent kinase (CDK) 4/6 inhibitor, is currently used clinically for treating hormone receptor-positive and human epidermal growth factor receptor 2 negative breast cancer. Additionally, it has the potential to be utilized in the treatment of various tumors, including malignant glioblastoma. Previous research has indicated that palbociclib is a substrate for two efflux transporters, P-glycoprotein (P-gp; MDR1) and breast cancer-resistant protein (BCRP), which restrict the brain exposure of palbociclib. In the present study, our objective was to alter the brain distribution pattern of palbociclib by creating and assessing two novel prodrugs through in vitro, in situ, and in vivo evaluations. To this end, we synthesized two prodrugs of palbociclib by attaching it to the tyrosine promoiety at the para- (PD1) and meta-(PD2) position via a carbamate bond. We hypothesized that the prodrugs could bypass efflux transporter-mediated drug resistance by leveraging the l-type amino acid transporter (LAT1) to facilitate their transport across the blood-brain barrier (BBB) and into cancer cells, such as glioma cells that express LAT1. The compounds PD1 and PD2 did not show selective binding and had limited inhibitory effects on LAT1 in three cell lines (MCF-7, U87-MG, HEK-hLAT1). However, PD1 and PD2 demonstrated the ability to evade efflux mechanisms, and their in vitro uptake profiles were comparable to that of palbociclib, indicating their potential for effective cellular transport. In in situ and in vivo studies, brain uptake was not significantly improved compared to palbociclib, but the pharmacokinetic profiles showed encouraging enhancements. PD1 exhibited a higher AUCbrain/plasma ratio, suggesting safer dosing, while PD2 showed favorable long-acting pharmacokinetics. Although our prodrug design did not significantly improve palbociclib brain delivery due to the potential size limitation of the prodrugs, the study provides valuable insights for future prodrug development and drug delivery strategies targeting specific transporters.


Subject(s)
Prodrugs , Humans , Prodrugs/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Neoplasm Proteins/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , Membrane Transport Proteins/metabolism
7.
Eur J Pharm Sci ; 195: 106661, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38052257

ABSTRACT

Temozolomide (TMZ) a DNA alkylating agent, is the standard-of-care for brain tumors, such as glioblastoma multiforme (GBM). Although the physicochemical and pharmacokinetic properties of TMZ, such as chemical stability and the ability to cross the blood-brain barrier (BBB), have been questioned in the past, the acquired chemoresistance has been the main limiting factor of long-term clinical use of TMZ. In the present study, an L-type amino acid transporter 1 (LAT1)-utilizing prodrug of TMZ (TMZ-AA, 6) was prepared and studied for its cellular accumulation and cytotoxic properties in human squamous cell carcinoma, UT-SCC-28 and UT-SCC-42B cells, and TMZ-sensitive human glioma, U-87MG cells that expressed functional LAT1. TMZ-AA 6 accumulated more effectively than TMZ itself into those cancer cells that expressed LAT1 (UT-SCC-42B). However, this did not correlate with decreased viability of treated cells. Indeed, TMZ-AA 6, similarly to TMZ itself, required adjuvant inhibitor(s) of DNA-repair systems, O6-methylguanine-DNA methyl transferase (MGMT) and base excision repair (BER), as well as active DNA mismatch repair (MMR), for maximal growth inhibition. The present study shows that improving the delivery of this widely-used methylating agent is not the main barrier to improved chemotherapy, although utilizing a specific transporter overexpressed at the BBB or glioma cells can have targeting advantages. To obtain a more effective anticancer prodrug, the compound design focus should shift to altering the major DNA alkylation site or inhibiting DNA repair systems.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Prodrugs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Dacarbazine/pharmacology , Drug Resistance, Neoplasm , DNA Repair , Glioblastoma/drug therapy , Glioma/drug therapy , Brain Neoplasms/drug therapy , DNA , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cell Line, Tumor
8.
Eur J Clin Pharmacol ; 79(12): 1709-1711, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864723

ABSTRACT

METHODS: Fifty-six (56) patients scheduled for arthroplasty, received 7-day extended-release buprenorphine transdermal patches (5 µg/h) for five consecutive weeks, starting two weeks prior to the surgery. Simultaneous plasma and cerebrospinal fluid (CSF) samples were collected during spinal anesthesia. RESULTS: Median buprenorphine plasma and CSF concentrations at steady-state were 54 pg/mL (range 8.6 - 167 pg/mL) and 1.6 pg/mL (0.30 - 7.3 pg/mL), respectively. The median CSF/plasma -ratio was 3% (range 0.35 - 16%). Large between-subject variability was observed in the measured buprenorphine concentrations within the study population.


Subject(s)
Buprenorphine , Osteoarthritis , Humans , Analgesics, Opioid , Transdermal Patch , Administration, Cutaneous
9.
Cell Rep ; 42(9): 113131, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37708023

ABSTRACT

Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.

10.
Eur J Hosp Pharm ; 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37640440

ABSTRACT

OBJECTIVES: Hospital pharmacies provide centralised intravenous additive services (CIVAS), such as antibiotic reconstitution. The aim of this study was to demonstrate the physicochemical stability of high-concentration cefuroxime sodium in aqueous injections, which is mandatory for the centralised preparation of products with automation. METHODS: The physicochemical stability of three high-concentration injections (1.5 g of cefuroxime sodium in 15 mL, 16 mL and 18 mL of water for injection (WFI)) were studied in two primary packing materials (glass vials and polypropylene syringes). The samples were reconstituted with automation in three mid-sized hospital pharmacies in a good manufacturing practice (GMP) grade A/B cleanroom. During the study, the samples were stored in refrigerated conditions (4°C) and 1.5 g/15 mL solution in ambient temperature (22°C). Cefuroxime and descarbamoyl cefuroxime were analysed by high-performance liquid chromatography with UV detection. In addition, the appearance, pH and uniformity of dosage units were investigated. RESULTS: The freshly prepared cefuroxime injections fulfilled the criteria of content uniformity (acceptance value (AV) <15). A significant decrease in concentration of cefuroxime and increase in content of descarbamoyl cefuroxime was observed in all injections. Cefuroxime aqueous injections were physiochemically stable for up to 14 days under refrigeration storage. The relative content of descarbamoyl cefuroxime remained under 3% at 4°C. The solution of 1.5 g/15 mL was stable for only 20 hours in formulations stored for the first 14 days at 4°C and then transferred to 22°C. The colour of the solution changed from light yellow to a darker yellow, and the pH value of the solutions increased during storage. Neither primary packing materials, commercial source of cefuroxime sodium nor exposure to light had any significant effect on the stability of formulations. CONCLUSIONS: Although limited, we found the shelf life of high-concentration cefuroxime injections in refrigerated conditions sufficient for centralised antibiotic preparation in hospital pharmacy with automation. The limited shelf life of high-concentration cefuroxime injections must be considered when using these formulations.

11.
Sci Rep ; 13(1): 11228, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433843

ABSTRACT

Physical activity is essential in weight management, improves overall health, and mitigates obesity-related risk markers. Besides inducing changes in systemic metabolism, habitual exercise may improve gut's microbial diversity and increase the abundance of beneficial taxa in a correlated fashion. Since there is a lack of integrative omics studies on exercise and overweight populations, we studied the metabolomes and gut microbiota associated with programmed exercise in obese individuals. We measured the serum and fecal metabolites of 17 adult women with overweight during a 6-week endurance exercise program. Further, we integrated the exercise-responsive metabolites with variations in the gut microbiome and cardiorespiratory parameters. We found clear correlation with several serum and fecal metabolites, and metabolic pathways, during the exercise period in comparison to the control period, indicating increased lipid oxidation and oxidative stress. Especially, exercise caused co-occurring increase in levels of serum lyso-phosphatidylcholine moieties and fecal glycerophosphocholine. This signature was associated with several microbial metagenome pathways and the abundance of Akkermansia. The study demonstrates that, in the absence of body composition changes, aerobic exercise can induce metabolic shifts that provide substrates for beneficial gut microbiota in overweight individuals.


Subject(s)
Gastrointestinal Microbiome , Overweight , Adult , Humans , Female , Overweight/therapy , Multiomics , Exercise , Obesity/therapy , Lecithins
12.
Mol Metab ; 76: 101779, 2023 10.
Article in English | MEDLINE | ID: mdl-37467962

ABSTRACT

OBJECTIVE: Both obesity and exposure to chemicals may induce non-alcoholic fatty liver disease (NAFLD). Pregnane X Receptor (PXR) is a central target of metabolism disrupting chemicals and disturbs hepatic glucose and lipid metabolism. We hypothesized that the metabolic consequences of PXR activation may be modified by existing obesity and associated metabolic dysfunction. METHODS: Wildtype and PXR knockout male mice were fed high-fat diet to induce obesity and metabolic dysfunction. PXR was activated with pregnenolone-16α-carbonitrile. Glucose metabolism, hepatosteatosis, insulin signaling, glucose uptake, liver glycogen, plasma and liver metabolomics, and liver, white adipose tissue, and muscle transcriptomics were investigated. RESULTS: PXR activation aggravated obesity-induced liver steatosis by promoting lipogenesis and inhibiting fatty acid disposal. Accordingly, hepatic insulin sensitivity was impaired and circulating alanine aminotransferase level increased. Lipid synthesis was facilitated by increased liver glucose uptake and utilization of glycogen reserves resulting in dissociation of hepatosteatosis and hepatic insulin resistance from the systemic glucose tolerance and insulin sensitivity. Furthermore, glucagon-induced hepatic glucose production was impaired. PXR deficiency did not protect from the metabolic manifestations of obesity, but the liver transcriptomics and metabolomics profiling suggest diminished activation of inflammation and less prominent changes in the overall metabolite profile. CONCLUSIONS: Obesity and PXR activation by chemical exposure have a synergistic effect on NAFLD development. To support liver fat accumulation the PXR activation reorganizes glucose metabolism that seemingly improves systemic glucose metabolism. This implies that obese individuals, already predisposed to metabolic diseases, may be more susceptible to harmful metabolic effects of PXR-activating drugs and environmental chemicals.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Male , Pregnane X Receptor , Mice, Obese , Obesity/metabolism , Glucose/metabolism
13.
Clin Nutr ; 42(7): 1126-1141, 2023 07.
Article in English | MEDLINE | ID: mdl-37268538

ABSTRACT

BACKGROUND & AIMS: Diet and weight loss affect circulating metabolome. However, metabolite profiles induced by different weight loss maintenance diets and underlying longer term weight loss maintenance remain unknown. Herein, we investigated after-weight-loss metabolic signatures of two isocaloric 24-wk weight maintenance diets differing in satiety value due to dietary fibre, protein and fat contents and identified metabolite features that associated with successful weight loss maintenance. METHODS: Non-targeted LC-MS metabolomics approach was used to analyse plasma metabolites of 79 women and men (mean age ± SD 49.7 ± 9.0 years; BMI 34.2 ± 2.5 kg/m2) participating in a weight management study. Participants underwent a 7-week very-low-energy diet (VLED) and were thereafter randomised into two groups for a 24-week weight maintenance phase. Higher satiety food (HSF) group consumed high-fibre, high-protein, and low-fat products, while lower satiety food (LSF) group consumed isocaloric low-fibre products with average protein and fat content as a part of their weight maintenance diets. Plasma metabolites were analysed before the VLED and before and after the weight maintenance phase. Metabolite features discriminating HSF and LSF groups were annotated. We also analysed metabolite features that discriminated participants who maintained ≥10% weight loss (HWM) and participants who maintained <10% weight loss (LWM) at the end of the study, irrespective of the diet. Finally, we assessed robust linear regression between metabolite features and anthropometric and food group variables. RESULTS: We annotated 126 metabolites that discriminated the HSF and LSF groups and HWM and LWM groups (p < 0.05). Compared to LSF, the HSF group had lower levels of several amino acids, e.g. glutamine, arginine, and glycine, short-, medium- and long-chain acylcarnitines (CARs), odd- and even-chain lysoglycerophospholipids, and higher levels of fatty amides. Compared to LWM, the HWM group in general showed higher levels of glycerophospholipids with a saturated long-chain and a C20:4 fatty acid tail, and unsaturated free fatty acids (FFAs). Changes in several saturated odd- and even-chain LPCs and LPEs and fatty amides were associated with the intake of many food groups, particularly grain and dairy products. Increase in several (lyso)glycerophospholipids was associated with decrease in body weight and adiposity. Increased short- and medium-chain CARs were related to decreased body fat-free mass. CONCLUSIONS: Our results show that isocaloric weight maintenance diets differing in dietary fibre, protein, and fat content affected amino acid and lipid metabolism. Increased abundances of several phospholipid species and FFAs were related with greater weight loss maintenance. Our findings indicate common and distinct metabolites for weight and dietary related variables in the context of weight reduction and weight management. The study was registered in isrctn.org with identifier 67529475.


Subject(s)
Diet , Dietary Fats , Male , Humans , Female , Dietary Fats/pharmacology , Diet, Reducing , Dietary Fiber , Metabolome , Weight Loss
14.
J Steroid Biochem Mol Biol ; 232: 106357, 2023 09.
Article in English | MEDLINE | ID: mdl-37390977

ABSTRACT

Previous steroid hormone studies concerning pregnancy and newborns have mainly focused on glucocorticoids; wider steroid profiles have been less commonly investigated. Here, we performed a comparative analysis of 17 steroids from newborn hair and umbilical cord serum at the time of delivery. The study participants (n = 42, 50% girls) were a part of the Kuopio Birth Cohort and represent usual Finnish pregnancies. The hair and cord serum samples were analyzed with liquid chromatography high resolution mass spectrometry and triple quadrupole tandem mass spectrometry, respectively. We detected high individual variations in steroid hormone concentrations in both sample matrices. The concentrations of cortisol (F), corticosterone (B), estrone (E1), estradiol (E2), dehydroepiandrosterone (DHEA), 11ß-hydroxyandostenedione (11bOHA4), 5α-androstanedione (DHA4), and 17α-hydroxypregnenolone (17OHP5) correlated positively between cord serum and newborn hair samples. In addition, F and 11bOHA4 concentrations correlated positively with each other in both newborn hair and cord serum samples. The cortisone-to-cortisol ratio (E/F) was significantly higher in cord serum than in newborn hair samples reflecting high placental 11ßHSD2 enzyme activity. Only minor sex differences in steroid concentrations were observed; higher testosterone (T) and 11-deoxycortisol (S) with lower 11bOHA4 in male cord serum, and higher DHEA, androstenedione (A4) and 11bOHA4 in female newborn hair samples. Parity and delivery mode were the most significant pregnancy- and birth-related parameters associating with F and some other adrenocortical steroid concentrations. This study provides novel information about intrauterine steroid metabolism in late pregnancy and typical concentration ranges for several newborn hair steroids, including also 11-oxygenated androgens.


Subject(s)
Hydrocortisone , Pregnancy Outcome , Female , Humans , Infant, Newborn , Male , Pregnancy , Androstenedione , Dehydroepiandrosterone , Estrone , Placenta , Tandem Mass Spectrometry/methods , Umbilical Cord
15.
J Headache Pain ; 24(1): 38, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37038131

ABSTRACT

BACKGROUND: Engaging the endocannabinoid system through inhibition of monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), degrading endocannabinoids (endoCBs) 2-arachidonoylglycerol (2-AG) and anandamide (AEA), was proposed as a promising approach to ameliorate migraine pain. However, the activity of MAGL and FAAH and action of endoCB on spiking activity of meningeal afferents, from which migraine pain originates, has not been explored thus far. Therefore, we here explored the analgesic effects of endoCB enhancement in rat and human meningeal tissues. METHODS: Both MAGL and FAAH activity and local 2-AG and AEA levels were measured by activity-based protein profiling (ABPP) and LC-MS/MS, respectively, in rat meninges obtained from hemiskulls of P38-P40 Wistar rats and human meninges from elderly patients undergoing non-migraine related neurosurgery. The action on endoCBs upon administration of novel dual MAGL/FAAH inhibitor AKU-005 on meningeal afferents excitability was tested by investigating paired KCl-induced spiking and validation with local (co-)application of either AEA or 2-AG. Finally, the specific TRPV1 agonist capsaicin and blocker capsazepine were tested. RESULTS: The basal level of 2-AG exceeded that of AEA in rat and human meninges. KCl-induced depolarization doubled the level of AEA. AKU-005 slightly increased spontaneous spiking activity whereas the dual MAGL/FAAH inhibitor significantly decreased excitation of nerve fibres induced by KCl. Similar inhibitory effects on meningeal afferents were observed with local applications of 2-AG or AEA. The action of AKU-005 was reversed by CB1 antagonist AM-251, implying CB1 receptor involvement in the anti-nociceptive effect. The inhibitory action of AEA was also reversed by AM-251, but not with the TRPV1 antagonist capsazepine. Data cluster analysis revealed that both AKU-005 and AEA largely increased long-term depression-like meningeal spiking activity upon paired KCl-induced spiking. CONCLUSIONS: In the meninges, high anti-nociceptive 2-AG levels can tonically counteract meningeal signalling, whereas AEA can be engaged on demand by local depolarization. AEA-mediated anti-nociceptive effects through CB1 receptors have therapeutic potential. Together with previously detected MAGL activity in trigeminal ganglia, dual MAGL/FAAH inhibitor AKU-005 appears promising as migraine treatment.


Subject(s)
Endocannabinoids , Migraine Disorders , Rats , Humans , Animals , Aged , Endocannabinoids/pharmacology , Monoglycerides/therapeutic use , Chromatography, Liquid , Nociception , Carbamates/pharmacology , Carbamates/therapeutic use , Rats, Wistar , Tandem Mass Spectrometry , Pain/drug therapy , Amidohydrolases/metabolism , Amidohydrolases/therapeutic use , Migraine Disorders/drug therapy , Monoacylglycerol Lipases/metabolism
16.
Sci Adv ; 9(2): eadd5163, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36638183

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide riboside (NR) has emerged as a promising compound to improve obesity-associated mitochondrial dysfunction and metabolic syndrome in mice. However, most short-term clinical trials conducted so far have not reported positive outcomes. Therefore, we aimed to determine whether long-term NR supplementation boosts mitochondrial biogenesis and metabolic health in humans. Twenty body mass index (BMI)-discordant monozygotic twin pairs were supplemented with an escalating dose of NR (250 to 1000 mg/day) for 5 months. NR improved systemic NAD+ metabolism, muscle mitochondrial number, myoblast differentiation, and gut microbiota composition in both cotwins. NR also showed a capacity to modulate epigenetic control of gene expression in muscle and adipose tissue in both cotwins. However, NR did not ameliorate adiposity or metabolic health. Overall, our results suggest that NR acts as a potent modifier of NAD+ metabolism, muscle mitochondrial biogenesis and stem cell function, gut microbiota, and DNA methylation in humans irrespective of BMI.


Subject(s)
Gastrointestinal Microbiome , NAD , Humans , Mice , Animals , NAD/metabolism , Organelle Biogenesis , Obesity/metabolism , Muscle, Skeletal/metabolism , Cell Differentiation
17.
mBio ; 14(1): e0266322, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36715540

ABSTRACT

Numerous studies have described specific metabolites as biomarkers of severe liver diseases, but very few have measured gut microbiota (GM)-produced metabolites in fatty liver disease. We aimed at finding GM signatures and metabolite markers in plasma and feces related to high liver fat content. Based on imaging, we divided study participants into low (<5%, LF, n = 25) and high (>5%, HF, n = 39) liver fat groups. Fecal (LF n = 14, HF n = 25) and plasma (LF n = 11, HF n = 7) metabolomes of subsets of participants were studied using liquid chromatography/high resolution mass spectrometry. The GM were analyzed using 16S rRNA gene sequencing. Additionally, blood clinical variables and diet were studied. Dyslipidemia, higher liver enzymes and insulin resistance characterized the HF group. No major differences in diet were found between the groups. In the GM, the HF group had lower abundance of Bacteroides and Prevotellaceae NK3B31 group than the LF group after adjusting for metformin use or obesity. In feces, the HF group had higher levels of lysine and histidine degradation products, while 6-hydroxybetatestosterone (metabolized by CYP3A4) was low. Higher plasma levels of caffeine and its metabolites in the HF group indicate that the activity of hepatic CYP1A2 was lower than in the LF group. Our results suggest, that low fecal Prevotellaceae NK3B31 and Bacteroides abundance, and increased lysine and histidine degradation may serve as GM biomarkers of high liver fat. Altered plasma caffeine metabolites and lowered testosterone metabolism may specify decreased CYP activities, and their potential utility, as biomarkers of fatty liver disease. IMPORTANCE Because the high prevalence of nonalcoholic fatty liver disease sets diagnostic challenges to health care, identification of new biomarkers of the disease that in the future could have potential utility as diagnostic biomarkers of high liver fat content is important. Our results show that increased amino acid degradation products in the feces may be such biomarkers. In the blood, molecules that indicate defective hepatic metabolic enzyme activities were identified in individuals with high liver fat content.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Lysine/metabolism , Histidine/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Caffeine/metabolism , Liver/metabolism , Biomarkers , Diet, High-Fat
18.
Eur J Nutr ; 62(2): 713-726, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36198920

ABSTRACT

PURPOSE: To identify fasting serum metabolites associated with WG intake in a free-living population adjusted for potential confounders. METHODS: We selected fasting serum samples at baseline from a subset (n = 364) of the prospective population-based Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD) cohort. The samples were analyzed using nontargeted metabolomics with liquid chromatography coupled with mass spectrometry (LC-MS). Association with WG intake was investigated using both random forest followed by linear regression adjusted for age, BMI, smoking, physical activity, energy and alcohol consumption, and partial Spearman correlation adjusted for the same covariates. Features selected by any of these models were shortlisted for annotation. We then checked if we could replicate the findings in an independent subset from the same cohort (n = 200). RESULTS: Direct associations were observed between WG intake and pipecolic acid betaine, tetradecanedioic acid, four glucuronidated alkylresorcinols (ARs), and an unknown metabolite both in discovery and replication cohorts. The associations remained significant (FDR<0.05) even after adjustment for the confounders in both cohorts. Sinapyl alcohol was positively correlated with WG intake in both cohorts after adjustment for the confounders but not in linear models in the replication cohort. Some microbial metabolites, such as indolepropionic acid, were positively correlated with WG intake in the discovery cohort, but the correlations were not replicated in the replication cohort. CONCLUSIONS: The identified associations between WG intake and the seven metabolites after adjusting for confounders in both discovery and replication cohorts suggest the potential of these metabolites as robust biomarkers of WG consumption.


Subject(s)
Metabolomics , Whole Grains , Humans , Prospective Studies , Reproducibility of Results , Metabolomics/methods , Fasting , Biomarkers
19.
Life Sci ; 310: 121088, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36257461

ABSTRACT

AIMS: Neuroinflammation is a prominent hallmark in several neurodegenerative diseases (NDs). Halting neuroinflammation can slow down the progression of NDs. Improving the efficacy of clinically available non-steroidal anti-inflammatory drugs (NSAIDs) is a promising approach that may lead to fast-track and effective disease-modifying therapies for NDs. Here, we aimed to utilize the L-type amino acid transporter 1 (LAT1) to improve the efficacy of salicylic acid as an example of an NSAID prodrug, for which brain uptake and intracellular localization have been reported earlier. MAIN METHODS: Firstly, we confirmed the improved LAT1 utilization of the salicylic acid prodrug (SA-AA) in freshly isolated primary mouse microglial cells. Secondly, we performed behavioural rotarod, open field, and four-limb hanging tests in mice, and a whole-brain proteome analysis. KEY FINDINGS: The SA-AA prodrug alleviated the lipopolysaccharide (LPS)-induced inflammation in the rotarod and hanging tests. The proteome analysis indicated decreased neuroinflammation at the molecular level. We identified 399 proteins linked to neuroinflammation out of 7416 proteins detected in the mouse brain. Among them, Gps2, Vamp8, Slc6a3, Slc18a2, Slc5a7, Rgs9, Lrrc1, Ppp1r1b, Gnal, and Adcy5/6 were associated with the drug's effects. The SA-AA prodrug attenuated the LPS-induced neuroinflammation through the regulation of critical pathways of neuroinflammation such as the cellular response to stress and transmission across chemical synapses. SIGNIFICANCE: The efficacy of NSAIDs can be improved via the utilization of LAT1 and repurposed for the treatment of neuroinflammation. This improved brain delivery and microglia localisation can be applied to other inflammatory modulators to achieve effective and targeted CNS therapies.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Neurodegenerative Diseases , Neuroinflammatory Diseases , Prodrugs , Animals , Mice , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Prodrugs/pharmacology , Proteome/metabolism , Salicylic Acid/pharmacology
20.
Sci Rep ; 12(1): 15018, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056162

ABSTRACT

The essential role of gut microbiota in health and disease is well recognized, but the biochemical details that underlie the beneficial impact remain largely undefined. To maintain its stability, microbiota participates in an interactive host-microbiota metabolic signaling, impacting metabolic phenotypes of the host. Dysbiosis of microbiota results in alteration of certain microbial and host metabolites. Identifying these markers could enhance early detection of certain diseases. We report LC-MS based non-targeted metabolic profiling that demonstrates a large effect of gut microbiota on mammalian tissue metabolites. It was hypothesized that gut microbiota influences the overall biochemistry of host metabolome and this effect is tissue-specific. Thirteen different tissues from germ-free (GF) and conventionally-raised (MPF) C57BL/6NTac mice were selected and their metabolic differences were analyzed. Our study demonstrated a large effect of microbiota on mammalian biochemistry at different tissues and resulted in statistically-significant modulation of metabolites from multiple metabolic pathways (p ≤ 0.05). Hundreds of molecular features were detected exclusively in one mouse group, with the majority of these being unique to specific tissue. A vast metabolic response of host to metabolites generated by the microbiota was observed, suggesting gut microbiota has a direct impact on host metabolism.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mammals , Metabolome , Metabolomics/methods , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...