Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Nutr ; 43(2): 484-493, 2024 02.
Article in English | MEDLINE | ID: mdl-38194788

ABSTRACT

BACKGROUND & AIMS: Epidemiologic studies have examined the association between dietary fatty acids and type 2 diabetes risk in general populations. Evidence regarding their associations with gestational diabetes mellitus (GDM) risk remains limited. This study aimed to evaluate prepregnancy fatty acids intake in relation to GDM risk. METHODS: 3,725 pregnant women from the Xi'an Birth Cohort Study who were free of previous GDM or pre-existing chronic diseases were included. Dietary intake of total fat and individual fatty acids (including saturated fatty acids [SFA], monounsaturated fatty acids [MUFA], polyunsaturated fatty acids [PUFA], and trans fatty acids) during the year preceding pregnancy was assessed by a validated food-frequency questionnaire before 16 weeks of gestation. GDM was confirmed based on the 75-g oral glucose tolerance test. Log-binomial or modified Poisson regression models were applied to estimate the relative risks (RRs) and 95 % confidence intervals (95%CIs) of GDM for fatty acids intake. Generalized linear regression was adopted for blood glucose levels with fatty acids intake. RESULTS: 644 (17.3 %) incident GDM cases were confirmed in our study. Participants in the highest intake of total fat substituting for carbohydrates had a 33 % reduced risk of GDM than those in the lowest intake (RR:0.67; 95%CI:0.55,0.81). For individual fatty acids, only PUFA intake was associated with a lower risk of GDM, with RR comparing extreme tertiles of 0.61 (95%CI:0.49,0.76). Each 2 % increase in energy from total fat and PUFA replacing carbohydrates decreased the risk of GDM by 6 % (95%CI:3 %,9 %) and 15 % (95%CI:9 %,21 %), respectively. Similar inverse associations with intake of total fat and PUFA were observed for blood glucose levels. Further analyses of SFA substitution showed that replacement of 2 % energy from SFA with PUFA and MUFA was associated with 26 % (RR:0.74; 95%CI:0.62,0.88) and 30 % (RR:0.70; 95%CI:0.50, 0.98) decreased risk of GDM, respectively. CONCLUSIONS: Greater intake of total fat and PUFA before pregnancy was associated with lower risk of GDM when replacing carbohydrates. Substitution SFA with PUFA and MUFA was also inversely associated with GDM risk. These findings support the important role of optimal dietary fatty acids composition in the prevention of GDM.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Humans , Female , Pregnancy , Diabetes, Gestational/epidemiology , Cohort Studies , Diet/adverse effects , Prospective Studies , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Blood Glucose , Dietary Fats/adverse effects , Fatty Acids , Fatty Acids, Unsaturated , Fatty Acids, Monounsaturated
2.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37788131

ABSTRACT

Epidemiological evidence on the association between potassium and cardiometabolic outcomes remains controversial. This study aimed to examine associations of dietary intake and blood and urinary levels of potassium with risk of type 2 diabetes, cardiovascular disease (CVD), and mortality. Relevant prospective studies were retrieved through a comprehensive search of four electronic databases up to July 1, 2023. Random-effects models were used to pool the study-specific relative risks (RRs) and 95% confidence intervals (CIs). Fifty-six studies were included in this meta-analysis. A higher intake of potassium was significantly associated with a 16% lower risk of CVD (RR: 0.84, 95% CI: 0.78-0.90). Similar inverse associations were also observed between potassium intake and mortality. Each 1.0 g/d increment in potassium intake was associated with a decreased risk of CVD (RR: 0.85, 95% CI: 0.80-0.91) and all-cause mortality (RR: 0.93, 95% CI: 0.88-0.99). For blood and urinary potassium levels, higher level of blood potassium increased the risk of all-cause mortality by 23% (RR: 1.23, 95% CI: 1.11-1.36). The association of blood potassium levels with mortality was nonlinear (Pnon-linearit<0.001). However, urinary potassium levels were inversely associated with the risk of all-cause mortality (RR: 0.84, 95% CI: 0.76-0.93). Our findings support the benefits of moderate potassium consumption for primary prevention of chronic diseases and premature death.

3.
Acta Biomater ; 169: 625-640, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37536494

ABSTRACT

Avascular necrosis of the femoral head is a prevalent hip joint disease. Due to the damage and destruction of the blood supply of the femoral head, the ischemic necrosis of bone cells and bone marrow leads to the structural changes and the collapse of the femoral head. In this study, an icariin-loaded 3D-printed porous Ti6Al4V reconstruction rod (referred to as reconstruction rod) was prepared by 3D printing technology. The mechanical validity of the reconstruction rod was verified by finite element analysis. Through infilling of mercapto hyaluronic acid hydrogel containing icariin into the porous structure, the loading of icariin was achieved. The biological efficacy of the reconstruction rod was confirmed through in vitro cell experiments, which demonstrated its ability to enhance MC3T3-E1 cell proliferation and facilitate cellular adhesion and spreading. The therapeutic efficacy of the reconstruction rod was validated in vivo through a femoral head necrosis model using animal experiments. The results demonstrated that the reconstruction rod facilitated osteogenesis and neovascularization, leading to effective osseointegration between bone and implant. This study provides innovative strategy for the treatment of early avascular necrosis of the femoral head. STATEMENT OF SIGNIFICANCE: The bioactivity of medical titanium alloy implants plays an important role in bone tissue engineering. This study proposed a medicine and device integrated designed porous Ti6Al4V reconstruction rod for avascular necrosis of the femoral head, whose macroscopic structure was customized by selective laser melting. The bionic porous structure of the reconstruction rod promoted the growth of bone tissue and formed an effective interface integration. Meanwhile, the loaded icariin promoted new bone and vascular regeneration, and increased the bone mass and bone density. Therefore, the implantation of reconstruction rod interfered with the further development of necrosis and provided a positive therapeutic effect. This study provides innovative strategies for the treatment of early avascular necrosis of femoral head.


Subject(s)
Femur Head Necrosis , Titanium , Animals , Porosity , Titanium/pharmacology , Titanium/chemistry , Femur Head Necrosis/drug therapy , Femur Head , Alloys/pharmacology , Printing, Three-Dimensional
4.
Front Nutr ; 9: 963471, 2022.
Article in English | MEDLINE | ID: mdl-36046138

ABSTRACT

Background and aims: Evidence regarding associations of circulating saturated fatty acids (SFAs) with chronic diseases is mixed. The objective of this study was to determine the associations between total or individual SFA biomarkers and the risk of cardiometabolic diseases. Methods: Four electronic databases were searched from inception to March 2022. Three investigators independently assessed for inclusion and extracted data. Random-effects or fixed-effects models was used to estimate the pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) for the association of total or individual SFA biomarkers, including even-chain SFAs (e.g., 14:0, myristic acid; 16:0, palmitic acid; 18:0, stearic acid), odd-chain SFAs (e.g., 15:0, pentadecanoic acid; 17:0, margaric acid) and very-long-chain SFAs (VLCSFAs; e.g., 20:0, arachidic acid; 22:0, behenic acid; 24:0, lignoceric acid), with risk of incident type 2 diabetes (T2D), cardiovascular disease [CVD; coronary heart disease (CHD) inclusive of stroke], CHD and stroke. Results: A total of 49 prospective studies reported in 45 articles were included. Higher concentration of circulating total SFAs was associated with an increasing risk of cardiometabolic diseases, the risk increased significantly by 50% for CVD (95%CI:1.31-1.71), 63% for CHD (95%CI:1.38-1.94), 38% for stroke (95%CI:1.05-1.82), respectively. Similarly, levels of even-chain SFAs were positively associated with higher risk of chronic diseases, with RRs ranging from 1.15 to 1.43. In contrast, the risk of cardiometabolic diseases was reduced with increasing odd-chain SFA levels, with RRs ranging from 0.62 to 0.91. A higher level of VLCSFAs corresponded to 19% reduction in CVD. Further dose-response analysis indicated that each 50% increment in percentage of total SFAs in circulating was associated with an 8% higher risk of T2D (RR: 1.08, 95%CI: 1.02-1.14) and trends toward higher risk of CVD (RR: 1.15, 95%CI: 0.98-1.34). Inverse linear relationships were observed between 17:0 biomarker and T2D or CVD risk. Conclusion: Our findings support the current recommendations of reducing intake of saturated fat as part of healthy dietary patterns. Further studies are needed to confirm our findings on these SFAs in relation to cardiometabolic outcomes and to elucidate underlying mechanisms. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022329182], identifier [CRD42022329182].

5.
Front Bioeng Biotechnol ; 9: 770049, 2021.
Article in English | MEDLINE | ID: mdl-34926420

ABSTRACT

Large-segment bone defect caused by trauma or tumor is one of the most challenging problems in orthopedic clinics. Biomimetic materials for bone tissue engineering have developed dramatically in the past few decades. The organic combination of biomimetic materials and stem cells offers new strategies for tissue repair, and the fate of stem cells is closely related to their extracellular matrix (ECM) properties. In this study, a photocrosslinked biomimetic methacrylated gelatin (Bio-GelMA) hydrogel scaffold was prepared to simulate the physical structure and chemical composition of the natural bone extracellular matrix, providing a three-dimensional (3D) template and extracellular matrix microenvironment. Bone marrow mesenchymal stem cells (BMSCS) were encapsulated in Bio-GelMA scaffolds to examine the therapeutic effects of ECM-loaded cells in a 3D environment simulated for segmental bone defects. In vitro results showed that Bio-GelMA had good biocompatibility and sufficient mechanical properties (14.22kPa). A rat segmental bone defect model was constructed in vivo. The GelMA-BMSC suspension was added into the PDMS mold with the size of the bone defect and photocured as a scaffold. BMSC-loaded Bio-GelMA resulted in maximum and robust new bone formation compared with hydrogels alone and stem cell group. In conclusion, the bio-GelMA scaffold can be used as a cell carrier of BMSC to promote the repair of segmental bone defects and has great potential in future clinical applications.

6.
Acta Biomater ; 126: 485-495, 2021 05.
Article in English | MEDLINE | ID: mdl-33766797

ABSTRACT

Orthopedic implants with heterogeneous porous structures were known as ideal bone osteointegration. This research introduced the selective laser melting (SLM), finite element analysis (FEA), and a hydrothermal process (HT) for manufacturing a three-level heterogeneous porous structure. The macroporous structure was designed via CAD and micropores were tuned via laser power regulation. A nano-size layer of hydroxyapatite crystals was coated by an HT process. The mechanical properties were reinforced via a core-shell structure with core reinforcement. The existence of micropores and nano-hydroxyapatite coating enhanced the in vitro proliferation of preosteoblasts and osteogenic cellular behaviors of rBMSCs. Thus, the three-level heterogeneous porous titanium implants could inspire researchers with potential clue of cyto-implant interaction mechanism, therefore building ideal orthopedic implants with accelerated osteointegration. STATEMENT OF SIGNIFICANCE: Porous structures of titanium implants play an important role in bone tissue regeneration; The geometrical environment influence cell behaviour and bone tissue ingrowth in all macro-/micro-/nanoscale. In this study, a novel method to fabricate heterogeneous scaffolds and its macro-/micro-/nanoscopic structures were studied. A CAD model was used to obtain the macroscopic structure and the insufficient laser power was introduced for porous microstructure. Therefore, a layer of nano hydroxyapatite was coated via hydrothermal process. Cytoproliferation and cytodifferentiation results indicated that a integrity of regular/irregular, macro-/micro-/nanoscale porous structure had advance in recruiting stem cells and promoting differentiation. This research is beneficial to the development of bone implants with better bone regeneration ability.


Subject(s)
Prostheses and Implants , Titanium , Lasers , Osteogenesis , Porosity
7.
Mater Sci Eng C Mater Biol Appl ; 120: 111789, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545915

ABSTRACT

Scaffold micro-topological structure plays an important role in the regulation of cell behavior in bone tissue engineering. This paper investigated the effect of 3D printing parameters on the scaffold micro-topological structure and its subsequent cell behaviors. By setting of different 3D printing parameters, i.e., the 3D printing laser power, the scanning interval and the thickness of sliced layers, the highest resolution up to 20 µm can be precisely fabricated. Scaffolds' characterization results indicated that the laser power affected the forming quality of melt tracks, the scanning interval distance determined the size of regularly arranged pores, and the thickness of sliced layers affected the morphological and structural characteristics. By regulating of these printing parameters, customized porous Ti6Al4V scaffold with varied hierarchical micro-topological structure can be obtained. In vitro cell culturing results showed that the regular porous micro-topological structure of scaffolds with the aperture close to cell size was more suitable for cell proliferation and adhesion. The overall distribution of cells on regular porous scaffolds was similar to the orderly arrangement of cultivated crops in the field. The findings suggested that customization of the scaffold provided an effective way to regulate cellular behavior and biological properties.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Alloys , Bone and Bones , Porosity , Printing, Three-Dimensional , Titanium
9.
ACS Appl Mater Interfaces ; 12(43): 48395-48407, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33064436

ABSTRACT

Scaffolds with a biomimetic hierarchy micro/nanoscale pores play an important role in bone tissue regeneration. In this study, multilevel porous calcium phosphate (CaP) bioceramic orthopedic implants were constructed to mimic the micro/nanostructural hierarchy in natural wood. The biomimetic hierarchical porous scaffolds were fabricated by combining three-dimensional (3D) printing technology and hydrothermal treatment. The first-level macropores (∼100-600 µm) for promoting bone tissue ingrowth were precisely designed using a set of 3D printing parameters. The second-level micro/nanoscale pores (∼100-10,000 nm) in the scaffolds were obtained by hydrothermal treatment to promote nutrient/metabolite transportation. Micro- and nanoscale-sized pores in the scaffolds were recognized as in situ formation of whiskers, where the shape, diameter, and length of whiskers were modulated by adjusting the components of calcium phosphate ceramics and hydrothermal treatment parameters. These biomimetic natural wood-like hierarchical structured scaffolds demonstrated unique physical and biological properties. Hydrophilicity and the protein adsorption rate were characterized in these scaffolds. In vitro studies have identified micro/nanowhisker coating as potent modulators of cellular behavior through the onset of focal adhesion formation. In addition, histological results indicate that biomimetic scaffolds with porous natural wood hierarchical pores exhibited good osteoinductive activity. In conclusion, these findings combined suggested that micro/nanowhisker coating is a critical factor to modulate cellular behavior and osteoinductive activity.


Subject(s)
Biological Products/pharmacology , Calcium Phosphates/pharmacology , Coated Materials, Biocompatible/pharmacology , Nanostructures/chemistry , Osteoblasts/drug effects , Wood/chemistry , 3T3 Cells , Animals , Biological Products/chemistry , Calcium Phosphates/chemistry , Cell Adhesion/drug effects , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Mice , Particle Size , Porosity , Printing, Three-Dimensional , Surface Properties
10.
Biofabrication ; 13(1)2020 10 28.
Article in English | MEDLINE | ID: mdl-33045688

ABSTRACT

Biofabrication of personalized titanium scaffold mimicking that of the osteocyte microenvironment is challenging due to its complex geometrical cues. The effect of scaffolds geometrical cues and implantation sites on osteogenesis is still not clear. In this study, personalized titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment were precisely designed and fabricated by selected laser melting method. The effects of different geometric cues, including porosity, pore sizes and interconnection properties, on cellular behavior were investigated. Biomimetic mechanical properties of porous titanium alloy scaffold were predesigned and simulated by finite element analysis.In vitroexperiment revealed that homogeneous diamond-like structures mimicking that of the osteocyte microenvironment triggered osteocyte adhesion and migration behavior. Typical implantation sites, including rabbit femur, beagle femur, and beagle skull, were used to study the implantation sites effects on bone regeneration.In vivoexperimental results indicated that different implantation sites showed significant differences. This study helps to understand the scaffolds geometrical microenvironment and implantation sites effects on osteogenesis mechanism. And it is beneficial to the development of bone implants with better bone regeneration ability.


Subject(s)
Osteocytes , Titanium , Alloys , Animals , Bone Regeneration , Dogs , Osteogenesis , Porosity , Printing, Three-Dimensional , Rabbits , Tissue Scaffolds
11.
Materials (Basel) ; 13(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947925

ABSTRACT

Plastic surgery is a broad field, including maxillofacial surgery, skin flaps and grafts, liposuction and body contouring, breast surgery, and facial cosmetic procedures. Due to the requirements of plastic surgery for the biological safety of materials, biomaterials are widely used because of its superior biocompatibility and biodegradability. Currently, there are many kinds of biomaterials clinically used in plastic surgery and their applications are diverse. Moreover, with the rise of three-dimensional printing technology in recent years, the macroscopically more precise and personalized bio-scaffolding materials with microporous structure have made good progress, which is thought to bring new development to biomaterials. Therefore, in this paper, we reviewed the plastic surgery biomaterials and current progress in their 3D manufacturing technology.

12.
Stem Cells Int ; 2019: 2180925, 2019.
Article in English | MEDLINE | ID: mdl-31949436

ABSTRACT

It is well known that stem cells reside within tissue engineering functional microenvironments that physically localize them and direct their stem cell fate. Recent efforts in the development of more complex and engineered scaffold technologies, together with new understanding of stem cell behavior in vitro, have provided a new impetus to study regulation and directing stem cell fate. A variety of tissue engineering technologies have been developed to regulate the fate of stem cells. Traditional methods to change the fate of stem cells are adding growth factors or some signaling pathways. In recent years, many studies have revealed that the geometrical microenvironment played an essential role in regulating the fate of stem cells, and the physical factors of scaffolds including mechanical properties, pore sizes, porosity, surface stiffness, three-dimensional structures, and mechanical stimulation may affect the fate of stem cells. Chemical factors such as cell-adhesive ligands and exogenous growth factors would also regulate the fate of stem cells. Understanding how these physical and chemical cues affect the fate of stem cells is essential for building more complex and controlled scaffolds for directing stem cell fate.

SELECTION OF CITATIONS
SEARCH DETAIL
...