ABSTRACT
Previous work on gene expression analysis based on RNA sequencing identified a variety of differentially expressed cDNA fragments in the genic male sterile-fertile line 114AB of Capsicum annuum L. In this work, we examined the accumulation of one of the transcript-derived fragments (TDFs), CaMF3 (male fertile 3), in the flower buds of a fertile line. The full genomic DNA sequence of CaMF3 was 1,951 bp long and contained 6 exons and 5 introns, with the complete sequence encoding a putative 25.89 kDa protein of 234 amino acids. The predicted protein of CaMF3 shared sequence similarity with members of the isoamyl acetate-hydrolyzing esterase (IAH1) protein family. CaMF3 expression was detected only in flower buds at stages 7 and 8 and in open flowers of a male fertile line; no expression was observed in any organs of a male sterile line. Fine expression analysis revealed that CaMF3 was expressed specifically in anthers of the fertile line. These results suggest that CaMF3 is an anther-specific gene that may be essential for anther or pollen development in C. annuum.
ABSTRACT
This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line ('E-38') was transformed with Cre gene and the inbred/pure line ('E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T(0) -plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T (0) -plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.
ABSTRACT
This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line ('E-38') was transformed with Cre gene and the inbred/pure line ('E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T0-plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T0-plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.