Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
Transl Lung Cancer Res ; 13(4): 849-860, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38736498

ABSTRACT

Background: Resectable non-small cell lung cancer (NSCLC) patients have a high risk of recurrence. Multiple randomized controlled trials (RCTs) have shown that neoadjuvant chemo-immunotherapy brings new hope for these patients. The study aims to evaluate the safety, surgery-related outcomes and oncological outcomes for neoadjuvant chemo-immunotherapy in real-world setting with a large sample size and long-term follow-up. Methods: Patients with clinical stage IB-IIIB NSCLC who received neoadjuvant chemo-immunotherapy at two Chinese institutions were included in this retrospective cohort study. Surgical and oncological outcomes of the enrolled NSCLC patients were collected and analyzed. Results: There were 158 patients identified, of which 124 (78.5%) were at stage IIIA-IIIB and the remaining 34 (21.5%) were at stage IB-IIB. Forty-one patients (25.9%) received two cycles of neoadjuvant treatment, 80 (50.6%) had three cycles, and 37 (23.4%) had four cycles. Twenty-four patients (15.2%) experienced grade 3 or worse immune-related adverse events. The median interval time between the last neoadjuvant therapy and surgery was 37 [interquartile range (IQR), 31-43] days. Fifty-eight out of 96 (60.4%) central NSCLC patients who were expected to undergo complex surgery had the scope or the difficulty of operation reduced. Ninety-five (60.1%) patients achieved major pathologic response (MPR), including 62 (39.2%) patients with pathologic complete response (pCR). Multivariate regression analysis showed that no clinical factor other than programmed death-ligand 1 (PD-L1) expression was predictive of the pathological response. The median follow-up time from diagnosis was 27.1 months. MPR and pCR were significantly associated with improved progression-free survival (PFS) and overall survival (OS). Neither stage nor PD-L1 expression was significantly associated with long-term survival. Conclusions: The neoadjuvant chemo-immunotherapy is a feasible strategy for NSCLC with a favorable rate of pCR/MPR, modified resection and 2-year survival. No clinical factor other than PD-L1 expression was predictive of the pathological response. pCR/MPR may be effective surrogate endpoint for survival in NSCLC patients who received neoadjuvant chemo-immunotherapy.

2.
Mol Divers ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647989

ABSTRACT

The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.

3.
Genome Med ; 16(1): 49, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566201

ABSTRACT

BACKGROUND: The efficacy of neoadjuvant chemo-immunotherapy (NAT) in esophageal squamous cell carcinoma (ESCC) is challenged by the intricate interplay within the tumor microenvironment (TME). Unveiling the immune landscape of ESCC in the context of NAT could shed light on heterogeneity and optimize therapeutic strategies for patients. METHODS: We analyzed single cells from 22 baseline and 24 post-NAT treatment samples of stage II/III ESCC patients to explore the association between the immune landscape and pathological response to neoadjuvant anti-PD-1 combination therapy, including pathological complete response (pCR), major pathological response (MPR), and incomplete pathological response (IPR). RESULTS: Single-cell profiling identified 14 major cell subsets of cancer, immune, and stromal cells. Trajectory analysis unveiled an interesting link between cancer cell differentiation and pathological response to NAT. ESCC tumors enriched with less differentiated cancer cells exhibited a potentially favorable pathological response to NAT, while tumors enriched with clusters of more differentiated cancer cells may resist treatment. Deconvolution of transcriptomes in pre-treatment tumors identified gene signatures in response to NAT contributed by specific immune cell populations. Upregulated genes associated with better pathological responses in CD8 + effector T cells primarily involved interferon-gamma (IFNγ) signaling, neutrophil degranulation, and negative regulation of the T cell apoptotic process, whereas downregulated genes were dominated by those in the immune response-activating cell surface receptor signaling pathway. Natural killer cells in pre-treatment tumors from pCR patients showed a similar upregulation of gene expression in response to IFNγ but a downregulation of genes in the neutrophil-mediated immunity pathways. A decreased cellular contexture of regulatory T cells in ESCC TME indicated a potentially favorable pathological response to NAT. Cell-cell communication analysis revealed extensive interactions between CCL5 and its receptor CCR5 in various immune cells of baseline pCR tumors. Immune checkpoint interaction pairs, including CTLA4-CD86, TIGIT-PVR, LGALS9-HAVCR2, and TNFSF4-TNFRSF4, might serve as additional therapeutic targets for ICI therapy in ESCC. CONCLUSIONS: This pioneering study unveiled an intriguing association between cancer cell differentiation and pathological response in esophageal cancer patients, revealing distinct subgroups of tumors for which neoadjuvant chemo-immunotherapy might be effective. We also delineated the immune landscape of ESCC tumors in the context of clinical response to NAT, which provides clinical insights for better understanding how patients respond to the treatment and further identifying novel therapeutic targets for ESCC patients in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Neoadjuvant Therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Immunotherapy , Combined Modality Therapy , Tumor Microenvironment , OX40 Ligand
4.
J Gerontol Soc Work ; : 1-18, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682357

ABSTRACT

A pilot study was undertaken between March 2019 and September 2021, loaning socially assistive robots (SARs) for a 7-day trial to older people living alone in China. Quantitative assessments of participants' acceptance of technology and loneliness were conducted before and after the intervention, supplemented with qualitative interviews. Unexpectedly, participants' intention to use SARs decreased significantly, largely due to emotional anxiety. Meanwhile, participants' level of loneliness remained unchanged. Follow-up interviews revealed anxious emotion, hesitant attitudes, unreal social presence, usability difficulties as contributing factors. The study provides social workers with valuable insights into introducing SARs into community care of older people.

6.
Technol Health Care ; 32(3): 1629-1640, 2024.
Article in English | MEDLINE | ID: mdl-38517809

ABSTRACT

BACKGROUND: Rapid and accurate segmentation of tumor regions from rectal cancer images can better understand the patientâs lesions and surrounding tissues, providing more effective auxiliary diagnostic information. However, cutting rectal tumors with deep learning still cannot be compared with manual segmentation, and a major obstacle to cutting rectal tumors with deep learning is the lack of high-quality data sets. OBJECTIVE: We propose to use our Re-segmentation Method to manually correct the model segmentation area and put it into training and training ideas. The data set has been made publicly available. Methods: A total of 354 rectal cancer CT images and 308 rectal region images labeled by experts from Jiangxi Cancer Hospital were included in the data set. Six network architectures are used to train the data set, and the region predicted by the model is manually revised and then put into training to improve the ability of model segmentation and then perform performance measurement. RESULTS: In this study, we use the Resegmentation Method for various popular network architectures. CONCLUSION: By comparing the evaluation indicators before and after using the Re-segmentation Method, we prove that our proposed Re-segmentation Method can further improve the performance of the rectal cancer image segmentation model.


Subject(s)
Deep Learning , Rectal Neoplasms , Tomography, X-Ray Computed , Humans , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
7.
J Clin Invest ; 134(6)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38488012

ABSTRACT

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Aged , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Aging , Cellular Senescence , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Intervertebral Disc/metabolism , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism
8.
Cell Death Dis ; 15(3): 233, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521813

ABSTRACT

AURKA is an established target for cancer therapy; however, the efficacy of its inhibitors in clinical trials is hindered by differential response rates across different tumor subtypes. In this study, we demonstrate AURKA regulates amino acid synthesis, rendering it a vulnerable target in KEAP1-deficient non-small cell lung cancer (NSCLC). Through CRISPR metabolic screens, we identified that KEAP1-knockdown cells showed the highest sensitivity to the AURKA inhibitor MLN8237. Subsequent investigations confirmed that KEAP1 deficiency heightens the susceptibility of NSCLC cells to AURKA inhibition both in vitro and in vivo, with the response depending on NRF2 activation. Mechanistically, AURKA interacts with the eIF2α kinase GCN2 and maintains its phosphorylation to regulate eIF2α-ATF4-mediated amino acid biosynthesis. AURKA inhibition restrains the expression of asparagine synthetase (ASNS), making KEAP1-deficient NSCLC cells vulnerable to AURKA inhibitors, in which ASNS is highly expressed. Our study unveils the pivotal role of AURKA in amino acid metabolism and identifies a specific metabolic indication for AURKA inhibitors. These findings also provide a novel clinical therapeutic target for KEAP1-mutant/deficient NSCLC, which is characterized by resistance to radiotherapy, chemotherapy, and targeted therapy.


Subject(s)
Aurora Kinase A , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Asparagine , Aurora Kinase A/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , NF-E2-Related Factor 2/metabolism
9.
J Colloid Interface Sci ; 665: 163-171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520933

ABSTRACT

Structuring a stable artificial coating to mitigate dendrite growth and side reactions is an effective strategy for protecting the Zn metal anode. Herein, a Cu-Ag double-layer metal coating is constructed on the Zn anode (Zn@Cu-Ag) by simple and in-situ displacement reactions. The Cu layer enhances the bond between the Ag layer and Zn substrate by acting as an intermediary, preventing the Ag coating from detachment. Concurrently, the Ag layer serves to improve the corrosion resistance of Cu metal. During plating, the initial Cu sheets and Ag particles on the surface of Zn@Cu-Ag electrode gradually transform into a flat and smooth layer, resulting in the formation of AgZn, AgZn3, and (Ag, Cu)Zn4 alloys. Alloys play a multifunctional role in inhibiting dendrite growth and side reactions due to decreased resistance, low nucleation barrier, enhanced zincophilicity, and strong corrosion resistance. Consequently, the Zn@Cu-Ag symmetric cell exhibits continuous stable performance for 3750 h at 1 mA cm-2. Furthermore, the Zn@Cu-Ag||Zn3V3O8 full cell achieves an initial capacity of 293.4 mAh g-1 and realizes long cycling stability over 1200 cycles. This work provides new insight into the engineering of an efficient artificial interface for highly stable and reversible Zn metal anodes.

10.
Exp Eye Res ; 241: 109837, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382576

ABSTRACT

The lens is an avascular tissue, where epithelial cells (LECs) are the primary living cells. The role of LECs-derived exosomes (LEC-exos) is largely unknown. In our study, we determined the anti-angiogenic role of LEC-exos, manifested as regressed retinal neovascularization (NV) using the oxygen-induced retinopathy (OIR), and reduced choroidal NV size and pathological vascular leakage using the laser-induced choroidal neovascularization (laser-induced CNV). Furthermore, the activation and accumulation of microglia were also restricted by LEC-exos. Based on Luminex multiplex assays, the expressions of chemokines such as SCYB16/CXCL16, MCP-1/CCL2, I-TAC/CXCL11, and MIP 3beta/CCL19 were decreased after treatment with LEC-exos. Transwell assays showed that LEC-exos restricted the migration of the mouse microglia cell line (BV2 cells). After incubation with LEC-exos-treated BV2 cells, human umbilical vein endothelial cells (hUVECs) were collected for further evaluation using tube formation, Transwell assays, and 5-ethynyl-2'-deoxyuridine (EDU) assays. Using in vitro experiments, the pro-angiogenic effect of microglia was restricted by LEC-exos. Hence, it was investigated that LEC-exos attenuated ocular NV, which might attribute to the inhibition of microglial activation and accumulation.


Subject(s)
Choroidal Neovascularization , Exosomes , Mesenchymal Stem Cells , Mice , Animals , Humans , Microglia , Exosomes/metabolism , Angiogenesis , Neovascularization, Physiologic/physiology , Human Umbilical Vein Endothelial Cells , Choroidal Neovascularization/metabolism
11.
Nat Cancer ; 5(4): 673-690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347143

ABSTRACT

Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.


Subject(s)
Asian People , Breast Neoplasms , Receptor, ErbB-2 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Female , Asian People/genetics , Receptor, ErbB-2/genetics , Mutation , Proteomics/methods , Gene Expression Profiling/methods , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Middle Aged , China/epidemiology , Ferroptosis/genetics , Adult , Metabolomics/methods , Transcriptome , Biomarkers, Tumor/genetics , East Asian People
12.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 379-392, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38379417

ABSTRACT

Patients diagnosed with non-small cell lung cancer (NSCLC) have a limited lifespan and exhibit poor immunotherapy outcomes. M1 macrophages have been found to be essential for antitumor immunity. This study aims to develop an immunotherapy response evaluation model for NSCLC patients based on transcription. RNA sequencing profiles of 254 advanced-stage NSCLC patients treated with immunotherapy are downloaded from the POPLAR and OAK projects. Immune cell infiltration in NSCLC patients is examined, and thereafter, different coexpressed genes are identified. Next, the impact of M1 macrophage-related genes on the prognosis of NSCLC patients is investigated. Six M1 macrophage coexpressed genes, namely, NKX2-1, CD8A , SFTA3, IL2RB, IDO1, and CXCL9, exhibit a strong association with the prognosis of NSCLC and serve as effective predictors for immunotherapy response. A response model is constructed using a Cox regression model and Lasso Cox regression analysis. The M1 genes are validated in our TD-FOREKNOW NSCLC clinical trial by RT-qPCR. The response model shows excellent immunotherapy response prediction and prognosis evaluation value in advanced-stage NSCLC. This model can effectively predict advanced NSCLC prognosis and aid in identifying patients who could benefit from customized immunotherapy as well as sensitive drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Populus , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Immunotherapy , Macrophages , Tumor Microenvironment
13.
Article in English | MEDLINE | ID: mdl-38409814

ABSTRACT

A sufficient number of participants should be included to adequately address the research interest in the surveys with sensitive questions. In this paper, sample size formulas/iterative algorithms are developed from the perspective of controlling the confidence interval width of the prevalence of a sensitive attribute under four non-randomized response models: the crosswise model, parallel model, Poisson item count technique model and negative binomial item count technique model. In contrast to the conventional approach for sample size determination, our sample size formulas/algorithms explicitly incorporate an assurance probability of controlling the width of a confidence interval within the pre-specified range. The performance of the proposed methods is evaluated with respect to the empirical coverage probability, empirical assurance probability and confidence width. Simulation results show that all formulas/algorithms are effective and hence are recommended for practical applications. A real example is used to illustrate the proposed methods.

14.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38349045

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Subject(s)
Chalcones , Sirtuin 2 , Triple Negative Breast Neoplasms , Humans , Sirtuin 2/pharmacology , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tubulin/pharmacology , Tubulin/therapeutic use , Cell Proliferation , Apoptosis
15.
Cranio ; : 1-10, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369853

ABSTRACT

OBJECTIVES: The pattern of age distribution in East Asian temporomandibular disorder (TMD) patients and age-related differences in DC/TMD diagnostic subtypes/categories were evaluated. SUBJECTS AND METHODS: TMD patients from two University-based centers in China and South Korea were enrolled. Axis I physical diagnoses were rendered according to DC/TMD. Patients were categorized into six age groups (15-24, 25-34, 35-44, 45-54, 55-64, and 65-84 years; Groups A-F respectively). RESULTS: Youths/young adults (Groups A-C) formed 74.1% of TMD patients. TMJ disc displacements (74.9%), arthralgia (49.2%), and degenerative joint disease [DJD] (36.8%) were the most common TMD subtypes. The majority had combined (54.0%) and chronic (58.5%) TMDs. Youths/young adults and middle-aged/old adults had substantially lower frequencies of merely pain-related (6.2-14.5%) and intra-articular (13.8-16.8%) TMDs correspondingly. "Being female" increased the prospects of pain-related/combined TMDs by 96%/49%, respectively. CONCLUSIONS: East Asian TMD patients comprised mostly of youths/young adults who had an alarmingly high prevalence of TMJ DJD.

16.
Small ; : e2310497, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351670

ABSTRACT

Aqueous zinc ion batteries have received widespread attention due to their merits of high safety, high theoretical specific capacity, low cost, and environmental benignity. Nevertheless, the irreversible issues of Zn anode deriving from side reactions and dendrite growth have hindered its commercialization in large-scale energy storage systems. Herein, a zinc phosphate tetrahydrate (Zn3 (PO4 )2 ·4H2 O, ZnPO) coating layer is in situ formed on the bare Zn by spontaneous redox reactions at room temperature to tackle the above issues. Particularly, the dense and brick-like ZnPO layer can effectively separate the anode surface from the aqueous electrolyte, thus suppressing the serious side reactions. Moreover, the ZnPO layer with high ionic conductivity, high Zn2+ transference number, and low nucleation barrier permits rapid Zn2+ transport and enables uniform Zn deposition, ensuring dendrite-free Zn deposition. As a result, the ZnPO@Zn symmetric battery achieves a high Coulombic efficiency of 99.8% and displays ultrahigh cycle stability over 6000 h (> 8 months), far surpassing its counterparts. Furthermore, the ZnPO@Zn||MnO2 full battery exhibits excellent electrochemical performances. Therefore, this work provides a new reference for simple and large-scale preparation of highly reversible Zn metal anodes, and has great potential for practical applications.

17.
J Nanobiotechnology ; 22(1): 56, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336783

ABSTRACT

Diabetic retinopathy (DR) is a vision-threatening diabetic complication that is characterized by microvasculature impairment and immune dysfunction. The present study demonstrated that M2 microglia intensively participated in retinal microangiopathy in human diabetic proliferative membranes, mice retinas, retinas of mice with oxygen-induced retinopathy (OIR) mice, and retinas of streptozotocin-induced DR mice. Further in vivo and in vitro experiments showed that exosomes derived from M2 polarized microglia (M2-exo) could reduce pericyte apoptosis and promote endothelial cell proliferation, thereby promoting vascular remodeling and reducing vascular leakage from the diabetic retina. These effects were further enhanced by M2-exo that facilitated M2 polarization of retinal microglia. Collectively, the study demonstrated the capability of M2-exo to induce retinal microvascular remodeling, which may provide a new therapeutic strategy for the treatment of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Exosomes , Mice , Animals , Humans , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/etiology , Vascular Remodeling , Microglia , Retina
18.
Nat Commun ; 15(1): 996, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307858

ABSTRACT

Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Reproduction , Biological Evolution , Hybridization, Genetic
19.
Respir Res ; 25(1): 18, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178073

ABSTRACT

OBJECTIVE: We aim to molecularly stratify stage IA lung adenocarcinoma (LUAD) for precision medicine. METHODS: Twelve multi-institution datasets (837 cases of IA) were used to classify the high- and low-risk types (based on survival status within 5 years), and the biological differences were compared. Then, a gene-based classifying score (IA score) was trained, tested and validated by several machine learning methods. Furthermore, we estimated the significance of the IA score in the prognostic assessment, chemotherapy prediction and risk stratification of stage IA LUAD. We also developed an R package for the clinical application. The SEER database (15708 IA samples) and TCGA Pan-Cancer (1881 stage I samples) database were used to verify clinical significance. RESULTS: Compared with the low-risk group, the high-risk group of stage IA LUAD has obvious enrichment of the malignant pathway and more driver mutations and copy number variations. The effect of the IA score on the classification of high- and low-risk stage IA LUAD was much better than that of classical clinicopathological factors (training set: AUC = 0.9, validation set: AUC = 0.7). The IA score can significantly predict the prognosis of stage IA LUAD and has a prognostic effect for stage I pancancer. The IA score can effectively predict chemotherapy sensitivity and occult metastasis or invasion in stage IA LUAD. The R package IAExpSuv has a good risk probability prediction effect for both groups and single stages of IA LUAD. CONCLUSIONS: The IA score can effectively stratify the risk of stage IA LUAD, offering good assistance in precision medicine.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , DNA Copy Number Variations , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Databases, Factual , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Risk Assessment , Prognosis
20.
Nat Struct Mol Biol ; 31(2): 219-231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177680

ABSTRACT

Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.


Subject(s)
Aurora Kinase A , Mitosis , Animals , Phosphorylation , Aurora Kinase A/metabolism , Signal Transduction , Endoplasmic Reticulum/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...