Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Am J Pathol ; 194(6): 1137-1153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749609

ABSTRACT

Preclinical models that display spontaneous metastasis are necessary to improve the therapeutic options for hormone receptor-positive breast cancers. Within this study, detailed cellular and molecular characterization was conducted on MCa-P1362, a newly established mouse model of metastatic breast cancer that is syngeneic in BALB/c mice. MCa-P1362 cancer cells express estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2. MCa-P1362 cancer cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for growth and tumor progression. Analysis of MCa-P1362 tumor explants revealed the tumors contained a mixture of cancer cells and mesenchymal stromal cells. Through transcriptomic and functional analyses of both cancer and stromal cells, stem cells were detected within both populations. Functional studies demonstrated that MCa-P1362 cancer stem cells drove tumor initiation, whereas stromal cells from these tumors contributed to drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of breast tumor progression and therapeutic resistance.


Subject(s)
Adenocarcinoma , Mesenchymal Stem Cells , Mice, Inbred BALB C , Receptor, ErbB-2 , Receptors, Estrogen , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Female , Humans , Receptor, ErbB-2/metabolism , Mice , Receptors, Estrogen/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Receptors, Progesterone/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/metabolism
2.
Adv Radiat Oncol ; 9(5): 101461, 2024 May.
Article in English | MEDLINE | ID: mdl-38550362

ABSTRACT

Purpose: Sexual and gender minority (SGM) individuals have an increased risk of poor health outcomes, in part due to knowledge and training gaps in health care education. This study sought to evaluate the knowledge, attitudes, and practice behaviors of various health care role groups within radiation oncology toward SGM patients. Methods and Materials: A 38-item web-based survey was emailed to 1045 staff across 2 large radiation oncology departments. The survey assessed demographics, attitudes, knowledge, and practice behaviors. χ2 tests were performed to explore differences in survey responses by age, political affiliation, religious identity, year since graduation, and role groups. One-way analysis of variance tests were conducted to determine differences between respondents' confidence in knowledge and performance on the knowledge section of the survey. Thematic analysis was applied to the open discussion section. Results: Of the 223 respondents, 103 clinicians (physicians/advanced practice providers/nurses) and 120 nonclinicians (administrative staff, medical assistants, and other nonmedical staff) participated in the survey (21.3% response rate): 72.6% answered the knowledge questions; 93.5% stated they were comfortable treating sexual minorities, or lesbian, gay, bisexual, and queer + patients; 88% indicated comfort in treating transgender patients; 36.6% stated they were confident in their knowledge of the health needs of transgender patients; and 50.3% expressed confidence in treating lesbian, gay, bisexual, and queer + patients. Fewer nonclinicians than clinicians thought that gender identity, sexual orientation, and sex assigned at birth were important to provide the best care (P < .05). The open comments section identified key themes, including the belief that current educational tools are not helpful, desire for more educational formats (lectures, case-based learning, seminars), and an overall interest in SGM health education. Conclusions: Most staff feel comfortable in treating SGM patients but are less confident in the distinct needs of this population. Knowledge gaps persist for both clinicians and nonclinicians, indicating a need for further training specific to oncology care.

3.
Cancer Immunol Res ; 12(4): 400-412, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38260999

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.


Subject(s)
Cholangiocarcinoma , Cisplatin , Gemcitabine , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , Cisplatin/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Gemcitabine/therapeutic use , Tumor Microenvironment
4.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37781599

ABSTRACT

Surgical removal of lymph nodes (LNs) to prevent metastatic recurrence, including sentinel lymph node biopsy (SLNB) and completion lymph node dissection (CLND), are performed in routine practice. However, it remains controversial whether removing LNs which are critical for adaptive immune responses impairs immune checkpoint blockade (ICB) efficacy. Here, our retrospective analysis demonstrated that stage III melanoma patients retain robust response to anti-PD1 inhibition after CLND. Using orthotopic murine mammary carcinoma and melanoma models, we show that responses to ICB persist in mice after TDLN resection. Mechanistically, after TDLN resection, antigen can be re-directed to distant LNs, which extends the responsiveness to ICB. Strikingly, by evaluating head and neck cancer patients treated by neoadjuvant durvalumab and irradiation, we show that distant LNs (metastases-free) remain reactive in ICB responders after tumor and disease-related LN resection, hence, persistent anti-cancer immune reactions in distant LNs. Additionally, after TDLN dissection in murine models, ICB delivered to distant LNs generated greater survival benefit, compared to systemic administration. In complete responders, anti-tumor immune memory induced by ICB was systemic rather than confined within lymphoid organs. Based on these findings, we constructed a computational model to predict free antigen trafficking in patients that will undergo LN dissection.

5.
bioRxiv ; 2023 Nov 19.
Article in English | MEDLINE | ID: mdl-38014141

ABSTRACT

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.

6.
Res Sq ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461473

ABSTRACT

Secondary lymphedema is a debilitating condition driven by impaired regeneration of lymphatic vasculature following lymphatic injury, surgical removal of lymph nodes in cancer patients or infection. However, the extent to which collecting lymphatic vessels regenerate following injury remains unclear. Here, we employed a novel mouse model of lymphatic injury in combination with state-of-the-art lymphatic imaging to demonstrate that the implantation of an optimized fibrin gel following lymphatic vessel injury leads to the growth and reconnection of the injured lymphatic vessel network, resulting in the restoration of lymph flow to the draining node. Intriguingly, we found that fibrin implantation elevates the tissue levels of CCL5, a potent macrophage-recruiting chemokine. Notably, CCL5-KO mice displayed a reduced ability to reconnect injured vessels following fibrin gel implantation. These novel findings shed light on the mechanisms underlying lymphatic regeneration and suggest that enhancing CCL5 signaling may be a promising therapeutic strategy for enhancing lymphatic regeneration.

7.
bioRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333242

ABSTRACT

Preclinical models that display spontaneous metastasis are necessary to improve therapeutic options for hormone receptor positive breast cancers. In this study, we conducted a detailed cellular and molecular characterization of MCa-P1362, a novel syngeneic Balb/c mouse model of metastatic breast cancer. MCa-P1362 cancer cells expressed estrogen receptors (ER), progesterone receptors (PR), and HER-2 receptors. MCa-P1362 cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for tumor progression. Further characterization of MCa-P1362 tumor explants shows that they contain a mixture of epithelial cancer cells and stromal cells. Based on transcriptomic and functional analyses of cancer and stromal cells, stem cells are present in both populations. Functional studies demonstrate that crosstalk between cancer and stromal cells promotes tumor growth, metastasis, and drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of hormone receptor positive tumor progression and therapeutic resistance.

8.
J Exp Med ; 220(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37341991

ABSTRACT

Tumor-draining lymph nodes (TDLNs) are important for tumor antigen-specific T cell generation and effective anticancer immune responses. However, TDLNs are often the primary site of metastasis, causing immune suppression and worse outcomes. Through cross-species single-cell RNA-Seq analysis, we identified features defining cancer cell heterogeneity, plasticity, and immune evasion during breast cancer progression and lymph node metastasis (LNM). A subset of cancer cells in the lymph nodes exhibited elevated MHC class II (MHC-II) gene expression in both mice and humans. MHC-II+ cancer cells lacked costimulatory molecule expression, leading to regulatory T cell (Treg) expansion and fewer CD4+ effector T cells in TDLNs. Genetic knockout of MHC-II reduced LNM and Treg expansion, while overexpression of the MHC-II transactivator, Ciita, worsened LNM and caused excessive Treg expansion. These findings demonstrate that cancer cell MHC-II expression promotes metastasis and immune evasion in TDLNs.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/pathology , Cell Plasticity , Lymph Nodes , T-Lymphocytes, Regulatory , Lymphatic Metastasis/pathology , Immune Tolerance , Melanoma, Cutaneous Malignant
9.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747853

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Anti-PD-L1 immunotherapy combined with gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers, but responses are seen only in a minority of patients. Here, we studied the roles of anti-PD1 and anti-CTLA-4 immune checkpoint blockade (ICB) therapies when combined with gemcitabine/cisplatin and the mechanisms of treatment benefit in orthotopic murine ICC models. We evaluated the effects of the combined treatments on ICC vasculature and immune microenvironment using flow cytometry analysis, immunofluorescence, imaging mass cytometry, RNA-sequencing, qPCR, and in vivo T-cell depletion and CD8+ T-cell transfer using orthotopic ICC models and transgenic mice. Combining gemcitabine/cisplatin with anti-PD1 and anti-CTLA-4 antibodies led to substantial survival benefits and reduction of morbidity in two aggressive ICC models, which were ICB-resistant. Gemcitabine/cisplatin treatment increased the frequency of tumor-infiltrating lymphocytes and normalized the ICC vessels, and when combined with dual CTLA-4/PD1 blockade, increased the number of activated CD8+Cxcr3+IFN-γ+ T-cells. Depletion of CD8+ but not CD4+ T-cells compromised efficacy. Conversely, CD8+ T-cell transfer from Cxcr3-/- versus Cxcr3+/+ mice into Rag1-/- immunodeficient mice restored the anti-tumor effect of gemcitabine/cisplatin/ICB combination therapy. Finally, rational scheduling of the ICBs (anti-CTLA-4 "priming") with chemotherapy and anti-PD1 therapy achieved equivalent efficacy with continuous dosing while reducing overall drug exposure. In summary, gemcitabine/cisplatin chemotherapy normalizes vessel structure, increases activated T-cell infiltration, and enhances anti-PD1/CTLA-4 immunotherapy efficacy in aggressive murine ICC. This combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.

10.
Res Sq ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38234841

ABSTRACT

Wnt signaling plays a critical role in the progression and treatment outcome of glioblastoma (GBM). Here, we identified WNT7b as a heretofore unknown mechanism of resistance to immune checkpoint inhibition (αPD1) in GBM patients and murine models. Acquired resistance to αPD1 was found to be associated with the upregulation of Wnt7b and ß-catenin protein levels in GBM in patients and in a clinically relevant, stem-rich GBM model. Combining the porcupine inhibitor WNT974 with αPD1 prolonged the survival of GBM-bearing mice. However, this combination had a dichotomous response, with a subset of tumors showing refractoriness. WNT974 and αPD1 expanded a subset of DC3-like dendritic cells (DCs) and decreased the granulocytic myeloid-derived suppressor cells (gMDSCs) in the tumor microenvironment (TME). By contrast, monocytic MDSCs (mMDSCs) increased, while T-cell infiltration remained unchanged, suggesting potential TME-mediated resistance. Our preclinical findings warrant the testing of Wnt7b/ß-catenin combined with αPD1 in GBM patients with elevated Wnt7b/ß-catenin signaling.

11.
Nat Biomed Eng ; 5(12): 1426-1436, 2021 12.
Article in English | MEDLINE | ID: mdl-34282290

ABSTRACT

Strong and durable anticancer immune responses are associated with the generation of activated cancer-specific T cells in the draining lymph nodes. However, cancer cells can colonize lymph nodes and drive tumour progression. Here, we show that lymphocytes fail to penetrate metastatic lesions in lymph nodes. In tissue from patients with breast, colon, and head and neck cancers, as well as in mice with spontaneously developing breast-cancer lymph-node metastases, we found that lymphocyte exclusion from nodal lesions is associated with the presence of solid stress caused by lesion growth, that solid stress induces reductions in the number of functional high endothelial venules in the nodes, and that relieving solid stress in the mice increased the presence of lymphocytes in lymph-node lesions by about 15-fold. Solid-stress-mediated impairment of lymphocyte infiltration into lymph-node metastases suggests a therapeutic route for overcoming T-cell exclusion during immunotherapy.


Subject(s)
Immunotherapy , Lymph Nodes , Animals , Humans , Lymphatic Metastasis , Lymphocytes , Mice , T-Lymphocytes
12.
Cells ; 10(3)2021 03 12.
Article in English | MEDLINE | ID: mdl-33808959

ABSTRACT

Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.


Subject(s)
Lymph Nodes/pathology , Lymphatic Vessels/pathology , Neoplasms/pathology , Animals , Cell Movement , Cell Survival , Humans , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/surgery , Lymphatic Metastasis , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Lymphatic Vessels/surgery , Neoplasm Invasiveness , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Prognosis , Tumor Escape
13.
Oncogenesis ; 9(5): 57, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32483180

ABSTRACT

Gene transcription is coordinately regulated by multiple transcription factors. However, a systematic approach is still lacking to identify co-regulators for transcription factors. Here, we performed ChIP-Seq analysis and predicted the regulators for p53-mediated transcription process, from which we confirmed the roles of GLIS2, MAZ and MEF2A in regulating p53 target genes. We revealed that GLIS2 selectively regulates the transcription of PUMA but not p21. GLIS2 deficiency caused the elevation of H3K27ac and p53 binding on the PUMA enhancer, and promoted PUMA expression. It increased the rate of apoptosis, but not cell cycle. Moreover, GLIS2 represses H3K27ac level on enhancers, regulates the gene expression related with focal adhesion and promotes cell migration, through inhibiting p300. Big data analysis supports GLIS2 as an oncogene in colon cancer, and perhaps other cancers. Taken together, we have predicted candidates for p53 transcriptional regulators, and provided evidence for GLIS2 as an oncogene through repressing enhancer activation.

14.
Clin Epigenetics ; 11(1): 48, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30867030

ABSTRACT

BACKGROUND: Activation of transcription enhancers, especially super-enhancers, is one of the critical epigenetic features of tumorigenesis. However, very few studies have systematically identified the enhancers specific in cancer tissues. METHODS: Here, we studied the change of histone modifications in MMTV-PyVT breast cancer model, combining mass spectrometry-based proteomics and ChIP-seq-based epigenomics approaches. Some of the proteomic results were confirmed with western blotting and IHC staining. An inhibitor of H3K27ac was applied to study its effect on cancer development. RESULTS: H3K27ac and H4K8ac are elevated in cancer, which was confirmed in patient tissue chips. ChIP-seq revealed that H4K8ac is co-localized with H3K27ac on chromatin, especially on distal enhancers. Epigenomic studies further identified a subgroup of super-enhancers marked by H3K4me3 peaks in the intergenic regions. The H3K4me3-enriched regions enhancers are associated with higher level of H3K27ac and H4K8ac compared with the average level of conventional super-enhancers and are associated with higher transcription level of their adjacent genes. We identified 148 H3K4me3-enriched super-enhancers with higher gene expression in tumor, which may be critical for breast cancer. One inhibitor for p300 and H3K27ac, C646, repressed tumor formation probably through inhibiting Vegfa and other genes. CONCLUSIONS: Taken together, our work identifies novel regulators and provides important resource to the genome-wide enhancer studies in breast cancer and raises the possibility of cancer treatment through modulating enhancer activity.


Subject(s)
Breast Neoplasms/pathology , Enhancer Elements, Genetic , Histones/genetics , Histones/metabolism , Mammary Neoplasms, Experimental/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromatin Immunoprecipitation Sequencing , Epigenesis, Genetic , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Histone Code , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Proteomics , Transcriptional Activation , Up-Regulation
15.
Nucleic Acids Res ; 46(21): 11202-11213, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30137413

ABSTRACT

DYRK1A, dual-specificity tyrosine phosphorylation-regulated kinase 1A, which is linked to mental retardation and microcephaly, is a member of the CMGC group of kinases. It has both cytoplasmic and nuclear functions, however, molecular mechanisms of how DYRK1A regulates gene expression is not well understood. Here, we identify two histone acetyltransferases, p300 and CBP, as interaction partners of DYRK1A through a proteomics study. We show that overexpression of DYKR1A causes hyperphosphorylation of p300 and CBP. Using genome-wide location (ChIP-sequencing) analysis of DYRK1A, we show that most of the DYRK1A peaks co-localize with p300 and CBP, at enhancers or near the transcription start sites (TSS). Modulation of DYRK1A, by shRNA mediated reduction or transfection mediated overexpression, leads to alteration of expression of downstream located genes. We show that the knockdown of DYRK1A results in a significant loss of H3K27acetylation at these enhancers, suggesting that DYRK1A modulates the activity of p300/CBP at these enhancers. We propose that DYRK1A functions in enhancer regulation by interacting with p300/CBP and modulating their activity. Overall, DYRK1A function in the regulation of enhancer activity provides a new mechanistic understanding of DYRK1A mediated regulation of gene expression, which may help in better understanding of the roles of DYRK1A in human pathologies.


Subject(s)
CREB-Binding Protein/genetics , Enhancer Elements, Genetic/genetics , Histone Acetyltransferases/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , p300-CBP Transcription Factors/genetics , CREB-Binding Protein/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Histone Acetyltransferases/metabolism , Humans , Promoter Regions, Genetic/genetics , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , THP-1 Cells , Transcription Initiation Site , p300-CBP Transcription Factors/metabolism , Dyrk Kinases
16.
Epigenomics ; 9(8): 1077-1092, 2017 08.
Article in English | MEDLINE | ID: mdl-28762778

ABSTRACT

AIM: Epigenetic marks are critical regulators of chromatin and gene activity. Their roles in normal physiology and disease states, including cancer development, still remain elusive. Herein, the epigenomic change of H3K9me3, as well as its potential impacts on gene activity and genome stability, was investigated in an in vitro breast cancer transformation model. METHODS: The global H3K9me3 level was studied with western blotting. The distribution of H3K9me3 on chromatin and gene expression was studied with ChIP-Seq and RNA-Seq, respectively. RESULTS: The global H3K9me3 level decreases during transformation and its distribution on chromatin is reprogrammed. By combining with TCGA data, we identified 67 candidate oncogenes, among which five genes are totally novel. Our analysis further links H3K9me3 with transposon activity, and suggests H3K9me3 reduction increases the cell's sensitivity to DNA damage reagents. CONCLUSION: H3K9me3 reduction is possibly related with breast cancer transformation by regulating gene expression and chromatin stability during transformation.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone Code , Histones/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Female , Humans , Oncogenes
17.
J Immunol ; 198(3): 1274-1284, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28011935

ABSTRACT

Upon virus infection, host cells use retinoic-acid-inducible geneI I (RIG-I)-like receptors to recognize viral RNA and activate type I IFN expression. To investigate the role of protein methylation in the antiviral signaling pathway, we screened all the SET domain-containing proteins and identified TTLL12 as a negative regulator of RIG-I signaling. TTLL12 contains SET and TTL domains, which are predicted to have lysine methyltransferase and tubulin tyrosine ligase activities, respectively. Exogenous expression of TTLL12 represses IFN-ß expression induced by Sendai virus. TTLL12 deficiency by RNA interference and CRISPR-gRNA techniques increases the induced IFN-ß expression and inhibits virus replication in the cell. The global gene expression profiling indicated that TTLL12 specifically inhibits the expression of the downstream genes of innate immunity pathways. Cell fractionation and fluorescent staining indicated that TTLL12 is localized in the cytosol. The mutagenesis study suggested that TTLL12's ability to repress the RIG-I pathway is probably not dependent on protein modifications. Instead, TTLL12 directly interacts with virus-induced signaling adaptor (VISA), TBK1, and IKKε, and inhibits the interactions of VISA with other signaling molecules. Taken together, our findings demonstrate TTLL12 as a negative regulator of RNA-virus-induced type I IFN expression by inhibiting the interaction of VISA with other proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Carrier Proteins/physiology , Interferon Type I/physiology , Signal Transduction/physiology , Carrier Proteins/analysis , Cell Line , Cytosol/chemistry , DEAD Box Protein 58/physiology , Humans , I-kappa B Kinase/physiology , Immunity, Innate , Protein Serine-Threonine Kinases/physiology , Receptors, Immunologic , Virus Replication
18.
Nucleic Acids Res ; 45(1): 92-105, 2017 01 09.
Article in English | MEDLINE | ID: mdl-27614073

ABSTRACT

Trimethylation of histone H3K36 is a chromatin mark associated with active gene expression, which has been implicated in coupling transcription with mRNA splicing and DNA damage response. SETD2 is a major H3K36 trimethyltransferase, which has been implicated as a tumor suppressor in mammals. Here, we report the regulation of SETD2 protein stability by the proteasome system, and the identification of SPOP, a key subunit of the CUL3 ubiquitin E3 ligase complex, as a SETD2-interacting protein. We demonstrate that SPOP is critically involved in SETD2 stability control and that the SPOP/CUL3 complex is responsible for SETD2 polyubiquitination both in vivo and in vitro ChIP-Seq analysis and biochemical experiments demonstrate that modulation of SPOP expression confers differential H3K36me3 on SETD2 target genes, and induce H3K36me3-coupled alternative splicing events. Together, these findings establish a functional connection between oncogenic SPOP and tumor suppressive SETD2 in the dynamic regulation of gene expression on chromatin.


Subject(s)
Alternative Splicing , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Nuclear Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Repressor Proteins/genetics , Cell Line, Tumor , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Methylation , Neoplastic Stem Cells , Nuclear Proteins/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Stability , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction , Ubiquitination
19.
Clin Epigenetics ; 8: 34, 2016.
Article in English | MEDLINE | ID: mdl-27034728

ABSTRACT

BACKGROUND: Epigenetic regulation has emerged to be the critical steps for tumorigenesis and metastasis. Multiple histone methyltransferase and demethylase have been implicated as tumor suppressors or oncogenes recently. But the key epigenomic events in cancer cell transformation still remain poorly understood. METHODS: A breast cancer transformation model was established via stably expressing three oncogenes in primary breast epithelial cells. Chromatin immunoprecipitation followed by the next-generation sequencing of histone methylations was performed to determine epigenetic events during transformation. Western blot, quantitative RT-PCR, and immunostaining were used to determine gene expression in cells and tissues. RESULTS: Histones H3K9me2 and me3, two repressive marks of transcription, decrease in in vitro breast cancer cell model and in vivo clinical tissues. A survey of enzymes related with H3K9 methylation indicated that KDM3A/JMJD1A, a demethylase for H3K9me1 and me2, gradually increases during cancer transformation and is elevated in patient tissues. KDM3A/JMJD1A deficiency impairs the growth of tumors in nude mice and transformed cell lines. Genome-wide ChIP-seq analysis reveals that the boundaries of decreased H3K9me2 large organized chromatin K9 modifications (LOCKs) are enriched with cancer-related genes, such as MYC and PAX3. Further studies show that KDM3A/JMJD1A directly binds to these oncogenes and regulates their transcription by removing H3K9me2 mark. CONCLUSIONS: Our study demonstrates reduction of histones H3K9 me2 and me3, and elevation of KDM3A/JMJD1A as important events for breast cancer, and illustrates the dynamic epigenomic mechanisms during breast cancer transformation.


Subject(s)
Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Epigenomics/methods , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Methylation , Mice , Mice, Nude
20.
J Cell Sci ; 129(12): 2343-53, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27127229

ABSTRACT

Unlike other members of the polycomb group protein family, EZH1 has been shown to positively associate with active transcription on a genome-wide scale. However, the underlying mechanism for this behavior still remains elusive. Here, we report that EZH1 physically interacts with UXT, a small chaperon-like transcription co-activator. UXT specifically interacts with EZH1 and SUZ12, but not EED. Similar to upon knockdown of UXT, knockdown of EZH1 or SUZ12 through RNA interference in the cell impairs the transcriptional activation of nuclear factor (NF)-κB target genes induced by TNFα. EZH1 deficiency also increases TNFα-induced cell death. Interestingly, chromatin immunoprecipitation and the following next-generation sequencing analysis show that H3K27 mono-, di- and tri-methylation on NF-κB target genes are not affected in EZH1- or UXT-deficient cells. EZH1 also does not affect the translocation of the p65 subunit of NF-κB (also known as RELA) from the cytosol to the nucleus. Instead, EZH1 and SUZ12 regulate the recruitment of p65 and RNA Pol II to target genes. Taken together, our study shows that EZH1 and SUZ12 act as positive regulators for NF-κB signaling and demonstrates that EZH1, SUZ12 and UXT work synergistically to regulate pathway activation in the nucleus.


Subject(s)
Gene Expression Regulation , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Polycomb Repressive Complex 2/metabolism , Transcription, Genetic , Apoptosis/drug effects , Cell Cycle Proteins , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Gene Expression Regulation/drug effects , HCT116 Cells , Histones/metabolism , Humans , Lysine/metabolism , Methylation/drug effects , Molecular Chaperones , Protein Binding/drug effects , Protein Transport/drug effects , RNA Polymerase II/metabolism , Transcription Factor RelA/metabolism , Transcription Factors , Transcription, Genetic/drug effects , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...