Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Heart Fail Rev ; 29(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37555989

ABSTRACT

Iron overload increases the production of harmful reactive oxygen species in the Fenton reaction, which causes oxidative stress in the body and lipid peroxidation in the cell membrane, and eventually leads to ferroptosis. Diabetes is associated with increased intracellular oxidative stress, inflammation, autophagy, microRNA alterations, and advanced glycation end products (AGEs), which cause cardiac remodeling and cardiac diastolic contractile dysfunction, leading to the development of diabetic cardiomyopathy (DCM). While these factors are also closely associated with ferroptosis, more and more studies have shown that iron-mediated ferroptosis is an important causative factor in DCM. In order to gain fresh insights into the functions of ferroptosis in DCM, this review methodically summarizes the traits and mechanisms connected with ferroptosis and DCM.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ferroptosis , MicroRNAs , Humans , Autophagy , Diastole , Reactive Oxygen Species
2.
Circulation ; 148(7): 589-606, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37203562

ABSTRACT

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Subject(s)
Aortic Dissection , Muscle, Smooth, Vascular , Animals , Humans , Mice , Aortic Dissection/genetics , MAP Kinase Signaling System , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phosphorylation
3.
Front Cell Dev Biol ; 9: 682574, 2021.
Article in English | MEDLINE | ID: mdl-34409030

ABSTRACT

The inflammatory response of endothelial cells accelerates various vascular diseases. MicroRNAs (miRNAs) participate in diverse cellular processes during inflammation. In the present study, we found that miR-302a is an effective suppressor of vascular inflammation in endothelial cells. It was revealed that miR-302a exhibited a lower level in a lipopolysaccharide (LPS)-induced mouse model and in patients with vascular inflammatory disease. Genetic haploinsufficiency of miR-302 aggravated the LPS-induced vascular inflammatory response in mice, and overexpression of miR-302a attenuated vascular inflammation in mice. Furthermore, overexpression of miR-302a inhibited the synthesis and secretion of adhesion factors in endothelial cells, and suppressed the adhesion of monocytes to endothelium. In the study of molecular mechanism, we found that miR-302a relieved vascular inflammation mainly by regulating the nuclear factor kappa-B (NF-κB) pathway in endothelial cells. The results showed that interleukin-1 receptor-associated kinase4 (IRAK4) and zinc finger protein 91 (ZFP91) were the binding targets of miR-302a. MiR-302a prevented the nuclear translocation of NF-κB by inhibiting phosphorylation of IκB kinase complex ß (IKKß) and inhibitors of κBα (IκBα) via targeting IRAK4. In addition, miR-302a downregulated the expression of NF-κB by directly binding with ZFP91. These findings indicate that miR-302a negatively regulates inflammatory responses in the endothelium via the NF-κB pathway and it may be a novel target for relieving vascular inflammation.

4.
Ren Fail ; 43(1): 128-140, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33427556

ABSTRACT

Diabetic nephropathy (DN) is a common complication of diabetes. Yishen capsule, composed of Chinese herbs, improves the clinical outcome in DN patients. However, its therapeutic potential and underlying mechanisms require further elucidation. Hence, our study aimed to investigate the underlying mechanisms and therapeutic potential of Yishen capsule in DN. Streptozotocin-induced DN rats were treated with Yishen capsules (1.25 g/kg/day) for 8 weeks. Then, blood glucose and urine protein levels were measured. Hematoxylin and eosin staining and western blot assays were used to examine the histologic changes and gene expression, respectively, in kidney samples. Mouse podocytes were treated with rat serum containing Yishen capsule and transmission electron microscopy was used to examine autophagosome formation. Cell counting kit-8 assay was performed to examine cell proliferation. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were conducted to detect changes in gene expression. The localization of SIRT1 was examined in the podocytes using immunocytofluorescence assay. We found that Yishen capsule relieved pathological changes, decreased urine protein, increased SIRT1, LC3-II, and Beclin-1 expression, and reduced acetylated NF-κB p65 expression in vivo. In addition, rat serum containing Yishen capsule showed improved podocyte proliferation, promoted the mRNA and protein levels of LC3-II and Beclin-1, and induced nuclear translocation of SIRT1. Furthermore, it increased SIRT1 expression and decreased mRNA level of NF-κB in the serum. SIRT1 inhibitor increased the mRNA level of NF-κB. Our data suggests that Yishen capsule improves DN by promoting podocyte autophagy via the SIRT1/NF-κB pathway.


Subject(s)
Autophagy/drug effects , Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Podocytes/drug effects , Signal Transduction/drug effects , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/pathology , Drugs, Chinese Herbal/chemistry , Male , Mice , Rats , Sirtuin 1/drug effects , Streptozocin , Transcription Factor RelA/metabolism
5.
Int J Biol Markers ; 36(1): 20-27, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33325278

ABSTRACT

BACKGROUND: Although renal cell carcinoma remains one of the most malignant cancers, our understanding of progression and recurrence of this disease is limited. The present study explored the precise role of miR-155-5p in renal cancer metastasis. METHODS: The expression of miR-155-5p in renal carcinoma clinical tissues and cells was determined using quantitative real time-polymerase chain reaction. The role of miR-155-5p on tumor cell growth were examined using CCK-8 and colony formation assays. Transwell assay was utilized to identify the role of miR-155-5p on the invasion and migration of renal cancer cells. Markers of epithelial-mesenchymal transition were determined using western blot. The in vivo effects of miR-155-5p on renal cancer cell growth, apoptosis, and metastasis were explored using xenograft mice. Luciferase reporter assay was performed to identify the potential target of miR-155-5p. RESULTS: Levels of miR-155-5p were significantly elevated in renal cancer tissues and cell lines. Suppression of miR-155-5p decreased the growth, colony formation, migration, and invasiveness of renal cancer cells. In contrast, overexpression of miR-155-5p led to opposite effects on renal cancer cells. Mechanically, the apoptosis-inducing factor was identified as the target of miR-155-5p. Interference of miR-155-5p significantly increased mRNA and protein expression of the apoptosis-inducing factor, whereas overexpression of miR-155-5p remarkably suppressed the apoptosis-inducing factor levels in renal cancer cells. The xenograft model identified that suppression of miR-155-5p restrained tumor growth and promoted apoptosis, whereas overexpression of miR-155-5p decreased apoptosis and accelerated tumor growth. Moreover, the number of lung metastasis nodules were decreased following injection with anti-miR-155-5p transfected cells, whereas the nodules were remarkably increased after overexpression of miR-155-5p. In addition, in vitro and in vivo assays both confirmed that suppression of miR-155-5p increased the expression of E-cadherin and decreased levels of N-cadherin and Snail, whereas overexpression of miR-155-5p accelerated epithelial-mesenchymal transition progression in renal cancer cells. CONCLUSION: These findings demonstrate that miR-155-5p enhances metastasis and epithelial-mesenchymal transition by targeting the apoptosis-inducing factor, suggesting that miR-155-5p represents a novel therapeutic target for renal cancer.


Subject(s)
MicroRNAs/metabolism , Animals , Apoptosis , Carcinoma, Renal Cell , Cell Movement , Epithelial-Mesenchymal Transition , Humans , Mice , Mice, Nude , Transfection
6.
BMC Urol ; 20(1): 160, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33059651

ABSTRACT

BACKGROUND: The metastasis-associated gene 1 (MTA1) has been extensively reported as a crucial oncogene, and its abnormal expression has been associated with the progression of numerous cancers. However, the role of MTA1 in renal cell carcinoma (RCC) progression and metastasis remains unclear. Herein, we investigated the expression of MTA1 and its role in RCC. METHODS: 109 matched clear cell RCCs (ccRCCs) and corresponding normal tissue samples were analyzed via immunohistochemistry to test the expression of MTA1. Human A498 cell lines were transfected with pcDNA3.1-Flag (control) or Flag-MTA1 to overexpress MTA1 or with specific interfering RNA (si-MTA1) or specific interfering negative control to knockdown MTA1 expression. Transfected cells were used in wound healing and transwell invasion assay. Quantitative real time polymerase chain reaction was used to assess the effect of MTA1 on MMP2/MMP9 and E-cadherin gene expression. Western blot was used to qualify the phosphorylation of p65. RESULTS: Herein, we found a significantly increased expression of MTA1 in 109 ccRCCs, compared to the corresponding normal tissue. In addition, the overexpression of MTA1 in A498 cells facilitated cell migration and invasion, while the down-regulation of MTA1 expression using specific interfering RNA sequences could decrease cell migration and invasion. Furthermore, we showed that MTA1 is up-regulated in ccRCCs, which contributes to the migration and invasion of human kidney cancer cells by mediating the expression of MMP2 and MMP9 through the NF-κB signaling pathway. Similarly, we found that MTA1 could regulate E-cadherin expression in RCCs. CONCLUSIONS: MTA1 is overexpressed in RCC and is involved in the progression of RCC through NF-κB.


Subject(s)
Carcinoma, Renal Cell/pathology , Cell Movement , Kidney Neoplasms/pathology , NF-kappa B/physiology , Repressor Proteins/physiology , Trans-Activators/physiology , Humans , Neoplasm Invasiveness , Signal Transduction , Tumor Cells, Cultured
7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(9): 1061-1067, 2020.
Article in English, Chinese | MEDLINE | ID: mdl-33051419

ABSTRACT

OBJECTIVES: To evaluate the expression of myeloid ecotropic viral integration site 1 (Meis1) and vascular endothelial growth factor receptor 2 (VEGFR-2) in early-stage kidney cancers and the clinical significance. METHODS: The cancer tissues and the matched adjacent normal tissues in patients with kidney cancer, who received surgical treatment from April 2005 to September 2018 in the Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, were collected. The samples included 80 pairs of paraffin specimen, 15 pairs of fresh cancer and the matched adjacent normal tissues from these patients. Real-time PCR and immunohistochemical method were used to detect the expression levels of Meis1 and VEGFR-2 mRNA and protein in kidney tissues and adjacent normal tissues, and the correlation of clinical pathology parameters and the prognosis were analyzed in the patients. RESULTS: The expression levels of Meis1 and VEGFR-2 mRNA and protein in the renal carcinoma tissues were lower than those in the matched adjacent normal tissues (both P<0.01), and the expression levels of Meis1 were positively correlated with that of VEGFR-2 (r=0.681, P<0.01). The analysis of relevant clinical-pathological parameters in the patients showed that: the expression positive rate of Meis1 was significantly related with the pathological type of renal cancer (P<0.01), while the positive rate of Meis1 and VEGFR-2 expression was not related with the gender, age, T stage of patients (all P>0.05), but it was significantly related with the prognosis in the patients (P<0.05). Cox regression analysis showed that: Meis1 was an independent factor for the prognosis of patients (P<0.05). CONCLUSIONS: The mRNA and protein expression levels of Meis1 and VEGFR-2 in the early-stage kidney cancer tissues are significantly decreased compared with those in the adjacent normal tissues. Meis1 may be served as a tumor suppressor to affect the occurrence and development of kidney cancer. Therefore, Meis1 may be used as a biomarker to predict the prognosis of patients with kidney cancer.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Myeloid Ecotropic Viral Integration Site 1 Protein , Vascular Endothelial Growth Factor Receptor-2 , Humans , Kidney Neoplasms/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Prognosis , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
Cell Death Dis ; 10(5): 365, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31064980

ABSTRACT

MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE-/- mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE-/- mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.


Subject(s)
Atherosclerosis/pathology , MicroRNAs/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antagomirs/metabolism , Aorta/metabolism , Aorta/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Diet, High-Fat , Gene Expression/drug effects , Human Umbilical Vein Endothelial Cells , Humans , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , Inflammation/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Mice, Knockout , MicroRNAs/antagonists & inhibitors , MicroRNAs/blood , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology
9.
Cell Death Dis ; 9(6): 610, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29795190

ABSTRACT

The development of nephrotoxicity largely limits the clinical use of chemotherapy. MiRNAs are able to target various genes and involved in the regulation of diverse cellular processes, including cell apoptosis and death. Our study showed that miR-181a expression was significantly increased after 5-fluorouracil (5-FU) treatment in renal mesangial cells and kidney tissue, which was associated with decreased baculoviral inhibition of apoptosis protein repeat-containing 6 (BIRC6) expression and increased apoptotic rate. Enforced miR-181a expression enhanced 5-FU-induced p53-dependent mitochondrial apoptosis, including declined Bcl-2/Bax ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase-9 and caspase-3 activation. However, inhibition of miR-181a was associated with reduced p53-mediated mitochondrial apoptosis induced by 5-FU. Moreover, miR-181a increased BIRC6 downstream gene p53 protein expression and transcriptional activity by reducing ubiquitin-mediated protein degradation. We found that miR-181a directly targeted 3'-UTR of BIRC6 mRNA and negatively regulated BIRC6 expression. In vivo study, knockdown of miR-181a with adeno-associated virus harboring miR-181a-tough decoy attenuated 5-FU-induced renal cell apoptosis, inflammation and kidney injury. In conclusion, these results demonstrate that miR-181a increases p53 protein expression and transcriptional activity by targeting BIRC6 and promotes 5-FU-induced apoptosis in mesangial cells. Inhibition of miR-181a ameliorates 5-FU-induced nephrotoxicity, suggesting that miR-181a may be a novel therapeutic target for nephrotoxicity treatment during chemotherapy.


Subject(s)
Apoptosis , Fluorouracil/adverse effects , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney/pathology , Mesangial Cells/pathology , MicroRNAs/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , HCT116 Cells , Humans , Inflammation/pathology , Inhibitor of Apoptosis Proteins/metabolism , Mesangial Cells/drug effects , Mice, Inbred C57BL , MicroRNAs/genetics , Mitochondria/metabolism , Signal Transduction , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...