Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 939: 173206, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38761925

ABSTRACT

Understanding the structure of non-metallic heteroatom-doped carbon catalysts and the subsequent degradation of new pollutants is crucial for designing more efficient carbon catalysts. Environmentally friendly in situ N-doped biochar catalysts were prepared for peroxymonosulfate (PMS) activation and sulfadiazine (SDZ) degradation. The acid washing process and calcination temperature of catalyst increased π-π* shake up, graphitic N percentage, specific surface area and defects, promoting the transformation of pollutant degradation mechanism from radical pathway to non-radical pathway. 100 % of the SDZ with the initial concentration of 10 mg/L was quickly degraded within 60 min using 0.2 g/L catalysts and 0.5 mM PMS. Excellent catalytic performance was attributed to singlet oxygen and electron transfer-dominated non-radical pathways. The four potential degradation pathways of SDZ were proposed, and toxicity predication indicated that overall biotoxicity of the intermediates during SDZ degradation was decreased. This research deepens our understanding of the mechanisms of non-radical pathways and guides the synthesis of carbon-based catalysts.

2.
Sci Total Environ ; 892: 164587, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37270008

ABSTRACT

A ternary micro-electrolysis system consisting of carbon-coated metallic iron with Cu nanoparticles (Fe0/C@Cu0) was synthesized for the degradation of sulfathiazole (STZ). Fe0/C@Cu0 catalysts exhibited excellent reusability and stability owing to the inner tailored Fe0 with persistent activity. The connection between Fe and Cu elements in the Fe0/C-3@Cu0 catalyst prepared with iron citrate as iron source exhibited a tighter contact than the catalysts prepared with FeSO4·7H2O and iron(II) oxalate as iron sources. Especially, unique core-shell structure of Fe0/C-3@Cu0 catalyst is more conducive to promoting the degradation of STZ. A two-stage reaction with rapidly degradation followed by gradual degradation was revealed. The mechanism of STZ degradation could be explained by the synergistic effects of Fe0/C@Cu0. Carbon layer with remarkable conductivity allowed electrons from Fe0 transferred freely to the Cu0. The electron-rich Cu0 releases electrons, facilitating the degradation of STZ. Furthermore, the high potential difference between cathode (C and Cu0) and anode (Fe0) accelerate the corrosion of Fe0. Importantly, Fe0/C@Cu0 catalysts exhibited excellent catalytic performance for sulfathiazole degradation in landfill leachate effluent. Results presented provide a new strategy for treatment of chemical wastes.


Subject(s)
Environmental Pollutants , Nanoparticles , Water Pollutants, Chemical , Electrolysis/methods , Iron/chemistry , Carbon , Sulfathiazole , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Catalysis
3.
Sci Total Environ ; 835: 155423, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35469885

ABSTRACT

Covalent organic frameworks (COFs) are promising supports for the synthesis of noble metal nanoparticles (NM NPs) with controllable sizes and dispersities. However, it is still challenging to synthesize COFs using green and efficient routes. Herein, COFs (TpMA) were prepared by ball milling, which required less solvent and time. They were then used as a support for the growth of ultrafine Au NPs. Using the COFs as supports, five size-controlled ultrafine Au NPs (2.5 ± 0.55- 4.32 ± 1.39 nm) were synthesized (Au@TpMA). It was found that the Au NPs exhibited remarkable dispersibility owing to the support of TpMA. The reduction of 4-nitrophenol to 4-aminophenol was used as a model reaction to evaluate the performance of the Au@TpMA catalyst, which showed excellent catalytic activity for the reduction of 4-nitrophenol. The Au@TpMA catalyst exhibited good stability and recyclability, and the reduction rate was 95% at the end of six successive experiments. In addition, in the presence of the Au@TpMA catalyst, the maximum pseudo-first-order reaction rate constant of 4-nitrophenol was 0.2379 min-1. From the results of this study, we hope that using COFs-based supports prepared by ball milling for the size-controlled synthesis of NM NPs provides a path forward for the mechanical synthesis of other COFs.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Catalysis , Gold
SELECTION OF CITATIONS
SEARCH DETAIL
...