Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(47): e2308355120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37963251

ABSTRACT

A detailed understanding of the innate immune mechanisms involved in restricting SARS-CoV-2 infection and how the virus disrupts these processes could reveal new strategies to boost antiviral mechanisms and develop therapeutics for COVID-19. Here, we identify cellular nucleic acid-binding protein (CNBP) as a key host factor controlling SARS-CoV-2 infection. In response to RNA-sensing pathways, CNBP is phosphorylated and translocates from the cytosol to the nucleus where it binds to the interferon-ß enhancer to initiate transcription. Because SARS-CoV-2 evades immune detection by the host's RNA-sensing pathways, CNBP is largely retained in the cytosol where it restricts SARS-CoV-2 directly, leading to a battle between the host and SARS-CoV-2 that extends beyond antiviral immune signaling pathways. We further demonstrated that CNBP binds SARS-CoV-2 viral RNA directly and competes with the viral nucleocapsid protein to prevent viral RNA and nucleocapsid protein from forming liquid-liquid phase separation (LLPS) condensates critical for viral replication. Consequently, cells and animals lacking CNBP have higher viral loads, and CNBP-deficient mice succumb rapidly to infection. Altogether, these findings identify CNBP as a key antiviral factor for SARS-CoV-2, functioning both as a regulator of antiviral IFN gene expression and a cell-intrinsic restriction factor that disrupts LLPS to limit viral replication and spread. In addition, our studies also highlight viral condensates as important targets and strategies for the development of drugs to combat COVID-19.


Subject(s)
COVID-19 , Interferons , Animals , Mice , Nucleocapsid Proteins , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/physiology , Transcription Factors , Virus Replication
2.
mBio ; 14(2): e0011023, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36852999

ABSTRACT

Influenza A virus (IAV) triggers multiple programmed cell death pathways, including MLKL-dependent necroptosis, caspase-8-dependent apoptosis, and caspase-1-dependent pyroptosis in myeloid cells. All three pathways share common upstream regulators, namely, ZBP1 and RIPK3. Yet, the molecular mechanism underlying IAV-induced inflammasome activation remains unclear. Here, we demonstrate that MLKL promotes inflammasome activation and IL-1ß processing in IAV-infected macrophages. MLKL drives NLRP3 inflammasome activation through potassium efflux. In the absence of the MLKL-inflammasome axis, caspase-8 coordinates the maturation and secretion of IL-1ß. MLKL alone is dispensable for host inflammatory responses to IAV in vivo. Taken together, MLKL and caspase-8 serve as redundant mechanisms by which to drive an inflammatory form of cell death in response to an IAV infection. IMPORTANCE Influenza A virus (IAV) induces multiple types of cell death, which play important roles in the host antiviral responses but can also cause unwanted inflammation and tissue damage. In this study, we dissect the interplay of cell death pathways and demonstrate that macrophages utilize redundant mechanisms to drive an inflammatory form of cell death upon IAV infection. MLKL, the executor of necroptosis, promotes inflammasome activation and pyroptotic cell death. When the MLKL-inflammasome axis is inhibited, cells divert to caspase-8-dependent inflammatory cell death. Our findings advance the current understanding of the innate immune response to IAV infection as well as broader contexts involving multifaceted cell death.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Inflammasomes/metabolism , Caspase 8/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cell Death , Apoptosis , Caspase 1/metabolism , Protein Kinases/metabolism
3.
Sci Adv ; 9(5): eadd5005, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36735791

ABSTRACT

RNA helicase DHX9 has been extensively characterized as a transcriptional regulator, which is consistent with its mostly nucleic localization. It is also involved in recognizing RNA viruses in the cytoplasm. However, there is no in vivo data to support the antiviral role of DHX9; meanwhile, as a nuclear protein, if and how nucleic DHX9 promotes antiviral immunity remains largely unknown. Here, we generated myeloid-specific and hepatocyte-specific DHX9 knockout mice and confirmed that DHX9 is crucial for host resistance to RNA virus infections in vivo. By additional knockout MAVS or STAT1 in DHX9-deficient mice, we demonstrated that nucleic DHX9 plays a positive role in regulating interferon-stimulated gene (ISG) expression downstream of type I interferon. Mechanistically, upon interferon stimulation, DHX9 is directly bound to STAT1 and recruits Pol II to the ISG promoter region to participate in STAT1-mediated transcription of ISGs. Collectively, these findings uncover an important role for nucleic DHX9 in antiviral immunity.


Subject(s)
Interferon Type I , Virus Replication , Animals , Mice , Antiviral Agents , Mice, Knockout , STAT1 Transcription Factor/genetics , Virus Replication/genetics
4.
Proc Natl Acad Sci U S A ; 120(1): e2213715120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577072

ABSTRACT

The nuclear long non-coding RNA LUCAT1 has previously been identified as a negative feedback regulator of type I interferon and inflammatory cytokine expression in human myeloid cells. Here, we define the mechanistic basis for the suppression of inflammatory gene expression by LUCAT1. Using comprehensive identification of RNA-binding proteins by mass spectrometry as well as RNA immunoprecipitation, we identified proteins important in processing and alternative splicing of mRNAs as LUCAT1-binding proteins. These included heterogeneous nuclear ribonucleoprotein C, M, and A2B1. Consistent with this finding, cells lacking LUCAT1 have altered splicing of selected immune genes. In particular, upon lipopolysaccharide stimulation, the splicing of the nuclear receptor 4A2 (NR4A2) gene was particularly affected. As a consequence, expression of NR4A2 was reduced and delayed in cells lacking LUCAT1. NR4A2-deficient cells had elevated expression of immune genes. These observations suggest that LUCAT1 is induced to control the splicing and stability of NR4A2, which is in part responsible for the anti-inflammatory effect of LUCAT1. Furthermore, we analyzed a large cohort of patients with inflammatory bowel disease as well as asthma and chronic obstructive pulmonary disease. In these patients, LUCAT1 levels were elevated and in both diseases, positively correlated with disease severity. Collectively, these studies define a key molecular mechanism of LUCAT1-dependent immune regulation through post-transcriptional regulation of mRNAs highlighting its role in the regulation of inflammatory disease.


Subject(s)
Nuclear Receptor Subfamily 4, Group A, Member 2 , RNA, Long Noncoding , Humans , Cell Movement , Cell Proliferation , Inflammation/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Receptors, Cytoplasmic and Nuclear , RNA, Long Noncoding/metabolism , RNA Splicing , RNA Stability
5.
mBio ; 13(4): e0199322, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35968955

ABSTRACT

P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Intestinal Mucosa , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Bile Acids and Salts/metabolism , Butyrates/metabolism , Inflammation , Intestinal Mucosa/metabolism , Mammals/metabolism , Mice
6.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35792863

ABSTRACT

Hepatocyte nuclear factor 4 α (HNF4A) is a highly conserved nuclear receptor that has been associated with ulcerative colitis. In mice, HNF4A is indispensable for the maintenance of intestinal homeostasis, yet the underlying mechanisms are poorly characterized. Here, we demonstrate that the expression of HNF4A in intestinal epithelial cells (IECs) is required for the proper development and composition of the intraepithelial lymphocyte (IEL) compartment. HNF4A directly regulates expression of immune signaling molecules including butyrophilin-like (Btnl) 1, Btnl6, H2-T3, and Clec2e that control IEC-IEL crosstalk. HNF4A selectively enhances the expansion of natural IELs that are TCRγδ+ or TCRαß+CD8αα+ to shape the composition of IEL compartment. In the small intestine, HNF4A cooperates with its paralog HNF4G, to drive expression of immune signaling molecules. Moreover, the HNF4A-BTNL regulatory axis is conserved in human IECs. Collectively, these findings underscore the importance of HNF4A as a conserved transcription factor controlling IEC-IEL crosstalk and suggest that HNF4A maintains intestinal homeostasis through regulation of the IEL compartment.


Subject(s)
Intraepithelial Lymphocytes , Animals , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Intestinal Mucosa , Mice , Mice, Inbred C57BL , Signal Transduction
7.
Res Sq ; 2022 May 02.
Article in English | MEDLINE | ID: mdl-35547851

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades antiviral immunity through the expression of viral proteins that block detection, signaling, interferon (IFN) induction, and IFN-stimulated gene (ISG) expression1, 2. Weak induction of type I IFNs is associated with a hyperinflammatory response in patients that develop severe COVID-193, 4, 5. Here we uncover a role for cellular nucleic acid-binding protein (CNBP) in restricting SARS-CoV-2. Typically, CNBP resides in the cytosol and, in response to RNA sensing pathways, undergoes phosphorylation, nuclear translocation, and IFNß enhancer DNA binding to turn on IFNß gene transcription. In SARS-CoV-2-infected cells CNBP coordinates IFNß gene transcription. In addition, CNBP binds SARS-CoV-2 viral RNA directly. CNBP competes with the nucleocapsid (N) protein and prevents viral RNA and nucleocapsid protein from undergoing liquid-liquid phase separation (LLPS) forming condensates critical for viral replication. Consequently, cells and animals lacking CNBP have higher viral loads and CNBP-deficient mice succumb rapidly to infection. Altogether, these findings identify CNBP as a key antiviral factor for SARS-CoV-2, functioning both as a regulator of antiviral IFN gene expression and a cell intrinsic restriction factor that disrupts LLPS to limit viral replication and spread.

8.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34168080

ABSTRACT

Type I interferons (IFNs) are innate immune cytokines required to establish cellular host defense. Precise control of IFN gene expression is crucial to maintaining immune homeostasis. Here, we demonstrated that cellular nucleic acid-binding protein (CNBP) was required for the production of type I IFNs in response to RNA virus infection. CNBP deficiency markedly impaired IFN production in macrophages and dendritic cells that were infected with a panel of RNA viruses or stimulated with synthetic double-stranded RNA. Furthermore, CNBP-deficient mice were more susceptible to influenza virus infection than were wild-type mice. Mechanistically, CNBP was phosphorylated and translocated to the nucleus, where it directly binds to the promoter of IFNb in response to RNA virus infection. Furthermore, CNBP controlled the recruitment of IFN regulatory factor (IRF) 3 and IRF7 to IFN promoters for the maximal induction of IFNb gene expression. These studies reveal a previously unrecognized role for CNBP as a transcriptional regulator of type I IFN genes engaged downstream of RNA virus-mediated innate immune signaling, which provides an additional layer of control for IRF3- and IRF7-dependent type I IFN gene expression and the antiviral innate immune response.


Subject(s)
Immunity , Interferon Type I/metabolism , RNA Virus Infections/immunology , RNA Virus Infections/virology , RNA Viruses/immunology , RNA-Binding Proteins/metabolism , A549 Cells , Animals , HEK293 Cells , Humans , Immunity/drug effects , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Mice, Inbred C57BL , Poly I-C/pharmacology , Promoter Regions, Genetic , Protein Binding/drug effects , RNA Viruses/drug effects , RNA, Viral/metabolism , Signal Transduction/drug effects , Virus Replication/drug effects
9.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34051146

ABSTRACT

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Subject(s)
Colitis/immunology , Dysbiosis/immunology , Immunity, Innate/immunology , Membrane Proteins/immunology , Myeloid Cells/immunology , Ubiquitination/immunology , Animals , Case-Control Studies , Female , Humans , Inflammation/immunology , Intestines/immunology , Male , Mice , Mice, Inbred C57BL , Monocytes/immunology
10.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33483420

ABSTRACT

RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.


Subject(s)
Colitis/immunology , Defensins/genetics , Enterobacteriaceae Infections/immunology , Paneth Cells/immunology , RNA Helicases/genetics , Wnt Signaling Pathway , Animals , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Defensins/immunology , Dextran Sulfate/administration & dosage , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/pathology , Gastrointestinal Microbiome/immunology , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/immunology , Paneth Cells/microbiology , Protein Isoforms/genetics , Protein Isoforms/immunology , RNA Helicases/immunology
11.
Nature ; 546(7660): 667-670, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28636595

ABSTRACT

Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.


Subject(s)
Epithelial Cells/immunology , Epithelial Cells/virology , Inflammasomes/metabolism , Intestines/cytology , Receptors, G-Protein-Coupled/metabolism , Rotavirus Infections/immunology , Rotavirus Infections/virology , Rotavirus/immunology , Animals , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , DEAD-box RNA Helicases/metabolism , Epithelial Cells/metabolism , Female , Immunity, Innate , Inflammasomes/chemistry , Inflammasomes/genetics , Interleukin-18/immunology , Intestinal Mucosa/metabolism , Intestines/immunology , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins , Pyroptosis , RNA, Double-Stranded/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/immunology , Rotavirus/growth & development
12.
Cell Res ; 26(4): 391-2, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26940660

ABSTRACT

Toll-Like Receptors (TLRs) play critical roles in the early innate immune response to invading pathogens by sensing microorganisms; a number of accessory molecules have been shown to assist microbial recognition by TLRs. In a recent paper in Cell Research, Yang et al. demonstrate that Mex3B is associated with TLR3 in the endosomes and promotes dsRNA binding and proteolytic processing of TLR3, suggesting that Mex3B acts as a coreceptor of TLR3 in response to dsRNA.


Subject(s)
Signal Transduction , Toll-Like Receptor 3 , Endosomes/metabolism , RNA, Double-Stranded/metabolism , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...