Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Methods ; 16(30): 5231-5238, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39007341

ABSTRACT

Deoxynivalenol (DON) has drawn considerable attention for its obvious pathogenicity and wide use in agro-products, which cause a potential threat to human health. In this work, an electrochemical immunosensor is developed for the highly sensitive and selective detection of DON in wheat flour using AuNPs-BP-MWCNTs-COOH and antibodies. The AuNPs-BP-MWCNTs-COOH nanocomposite was prepared via an in situ reduction reaction and ultrasonic-assisted liquid-phase exfoliation. The nanocomposite exhibits a larger surface area, decent stability, excellent electron transfer capability, good protein binding capability and prominent specificity. The plentiful carboxyl group on the nanocomposite can bind to the amino group of the antibody, and AuNPs have an affinity for the sulfhydryl group of the antibody, which makes it feasible for the nanocomposite to load the antibody. The peak currents are plotted against the logarithm of DON concentration from 0.002 to 80 ng mL-1 with a limit of detection (LOD) of 0.5 pg mL-1. This approach establishes an effective label-free immunosensor platform for the detection of DON with high sensitivity and selectivity in various food and agricultural products.


Subject(s)
Electrochemical Techniques , Flour , Gold , Metal Nanoparticles , Trichothecenes , Triticum , Trichothecenes/analysis , Trichothecenes/immunology , Flour/analysis , Triticum/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Electrochemical Techniques/methods , Immunoassay/methods , Biosensing Techniques/methods , Limit of Detection , Nanotubes, Carbon/chemistry , Food Contamination/analysis , Nanocomposites/chemistry
2.
ChemSusChem ; 14(20): 4377-4396, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34342394

ABSTRACT

The catalytic hydrodeoxygenation (HDO) of lignin has long been a hot research topic and vacancy engineering is a new means to develop more efficient catalysts for this process. Oxygen vacancies and sulfur vacancies are both widely used in HDO. Based on the current research status of vacancies in the field of lignin-derived oxygenates, this Minireview discusses in detail design methods for vacancy engineering, including surface activation, synergistic modification, and morphology control. Moreover, it is clarified that in the HDO reaction, vacancies can act as acidic sites, promote substrate adsorption, and regulate product distribution, whereas for the catalysts, vacancies can enhance stability and reducibility, improve metal dispersion, and improve redox capacity. Finally, the characterization of vacancies is summarized and strategies are proposed to address the current deficiencies in this field.

SELECTION OF CITATIONS
SEARCH DETAIL