Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37760310

ABSTRACT

Edwardsiella tarda is a crucial pathogenic bacterium in tropical aquaculture. This bacterium was recently isolated from tambaqui (Colossoma macropomum), a commercially important fish species in Brazil. This study assessed the antimicrobial susceptibility, pathogenicity, and genetic diversity of the tambaqui-derived E. tarda isolates. Fourteen bacterial isolates isolated from tambaqui were identified as E. tarda by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and dnaJ gene sequencing. Antimicrobial susceptibility tests were conducted against seven drugs using the disc diffusion assay. The pathogenicity test conducted by intraperitoneal injection of 2.4 × 107 colony-forming units (CFU) fish-1 of E. tarda (ED38-17) into tambaqui juveniles eventually revealed that neither clinical signs nor death were present. However, splenomegaly and whitish areas in the spleen and kidneys were observed. The histological investigation also revealed granulomatous splenitis, nephritis, and hepatitis occurring internally. Repetitive extragenic palindromic-PCR fingerprinting separated the 14 isolates into three genetic groups. The antibiogram revealed that all E. tarda isolates were wild-type (WT) to florfenicol (FLO), norfloxacin (NOR), neomycin (NEO), erythromycin (ERY), and oxytetracycline (OXY); however, some were non-wild-type to sulfamethoxazole/trimethoprim (7.1%) and amoxicillin (21.4%). Therefore, through experimental infection, E. tarda ED38-17 could induce pathogenic effects in C. macropomum. Additionally, three distinct genetic types were found, and the E. tarda isolates were WT to FLO, NOR, NEO, ERY, and OXY. These findings raise awareness of a bacteria causing unseen lesions, a pathogen that will potentially impact tambaqui aquaculture in the future.

2.
Parasitol Res ; 122(4): 1037-1042, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36797441

ABSTRACT

Ornamental fish are becoming increasingly popular, but the lack of knowledge regarding their various diseases is a major challenge. Skin diseases commonly found in freshwater fish include black spot disease (BSD), which is characterized by melanin deposits around the metacercariae of some trematode species. Since BSD remains poorly understood, this study describes an outbreak of BSD in Etroplus maculatus raised in outdoor ponds at a Brazilian fish farm. Metacercariae samples were collected, examined, and subjected to molecular phylogenetic analysis. The parasites were conspecific to an unnamed species, Crassiphiala lineage 5, recently found in Brazilian birds (Megaceryle torquata). Sequences obtained for longifurcate cercariae of the planorbid snail Biomphalaria straminea from the same region were identical to our metacercariae of Crassiphiala sp. These results suggest that Biompahalaria snails are likely an intermediate host of this parasite on farms where E. maculatus was found to be infected. We provide the first molecular evidence that Crassiphiala are the causative agents of BSD in fish from Brazil. Combatting snails and preventing access of fish-eating birds to outdoor ponds are strategies to control this disease in ornamental fish farms.


Subject(s)
Fish Diseases , Trematoda , Trematode Infections , Animals , Trematode Infections/parasitology , Brazil , Phylogeny , Fishes/parasitology , Snails/parasitology , Metacercariae , Fish Diseases/parasitology , Birds
3.
Genomics ; 110(6): 442-449, 2018 11.
Article in English | MEDLINE | ID: mdl-30367926

ABSTRACT

Francisella noatunensis subsp. orientalis (FNO) is an important emerging pathogen associated with disease outbreaks in farm-raised Nile tilapia. FNO genetic diversity using PCR-based typing, no intra-species discrimination was achieved among isolates/strains from different countries, thus demonstrating a clonal behaviour pattern. In this study, we aimed to evaluate the population structure of FNO isolates by comparing whole-genome sequencing data. The analysis of recombination showed that Brazilian isolates group formed a clonal population; whereas other lineages are also supported by this analysis for isolates from foreign countries. The whole-genome multilocus sequence typing (wgMLST) analysis showed varying numbers of dissimilar alleles, suggesting that the Brazilian clonal population are in expansion. Each Brazilian isolate could be identified as a single node by high-resolution gene-by-gene approach, presenting slight genetic differences associated to mutational events. The common ancestry node suggests a single entry into the country before 2012, and the rapid dissemination of this infectious agent may be linked to market sales of infected fingerlings.


Subject(s)
Francisella/genetics , Whole Genome Sequencing , Bacterial Typing Techniques , DNA, Bacterial , Francisella/classification , Genetic Variation , Genomics , Multilocus Sequence Typing
SELECTION OF CITATIONS
SEARCH DETAIL
...