Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 19125, 2023 11 05.
Article in English | MEDLINE | ID: mdl-37926724

ABSTRACT

The expansion and potential rupture of the swim bladder due to rapid decompression, a major cause of barotrauma injury in fish that pass through turbines and pumps, is generally assumed to be governed by Boyle's Law. In this study, two swim bladder expansion models are presented and tested in silico. One based on the quasi-static Boyle's Law, and a Modified Rayleigh Plesset Model (MRPM), which includes both inertial and pressure functions and was parametrised to be representative of a fish swim bladder. The two models were tested using a range of: (1) simulated and (2) empirically derived pressure profiles. Our results highlight a range of conditions where the Boyle's Law model (BLM) is inappropriate for predicting swim bladder size in response to pressure change and that these conditions occur in situ, indicating that this is an applied and not just theoretical issue. Specifically, these conditions include any one, or any combination, of the following factors: (1) when rate of pressure change is anything but very slow compared to the resonant frequency of the swim bladder; (2) when the nadir pressure is near or at absolute zero; and (3) when a fish experiences liquid tensions (i.e. negative absolute pressures). Under each of these conditions, the MRPM is more appropriate tool for predicting swim bladder size in response to pressure change and hence it is a better model for quantifying barotrauma in fish.


Subject(s)
Barotrauma , Animals , Barotrauma/etiology , Barotrauma/veterinary , Pressure
3.
Sci Rep ; 13(1): 8075, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37202429

ABSTRACT

Deterrents that use acoustics to guide fish away from dangerous areas depend on the elicitation of avoidance in the target species. Acoustic deterrents select the optimum frequency based on an assumption that highest avoidance is likely to occur at the greatest sensitivity. However, such an assumption may be unfounded. Using goldfish (Carassius auratus) as a suitable experimental model, this study tested this as a null hypothesis. Under laboratory conditions, the deterrence thresholds of individual goldfish exposed to 120 ms tones at six frequencies (250-2000 Hz) and four Sound Pressure Levels (SPL 115-145 dB) were quantified. The deterrence threshold defined as the SPL at which 25% of the tested population startled was calculated and compared to the hearing threshold obtained using Auditory Evoked Potential and particle acceleration threshold data. The optimum frequency to elicit a startle response was 250 Hz; different from the published hearing and particle acceleration sensitivities based on audiograms. The difference between the deterrence threshold and published hearing threshold data varied from 47.1 dB at 250 Hz to 76 dB at 600 Hz. This study demonstrates that information obtained from audiograms may poorly predict the most suitable frequencies at which avoidance behaviours are elicited in fish.


Subject(s)
Evoked Potentials, Auditory , Hearing , Animals , Acoustic Stimulation , Auditory Threshold/physiology , Hearing/physiology , Evoked Potentials, Auditory/physiology , Fishes/physiology , Acoustics
4.
J Hosp Infect ; 106(4): 649-656, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32956784

ABSTRACT

BACKGROUND: Sterile service department decontamination procedures for surgical instruments struggle to demonstrate efficient removal of the hardiest infectious contaminants, such as prion proteins. A recently designed novel system, which uses a low pressure ultrasonically activated, cold water stream, has previously demonstrated efficient hard surface cleaning of several biological contaminants. AIM: To test the efficacy of an ultrasonically activated stream for the removal of tissue proteins, including prion-associated amyloid, from surgical stainless steel surfaces. METHODS: Test surfaces were contaminated with 22L, ME7 or 263K prion-infected brain homogenates. The surfaces were treated with the ultrasonically activated water stream for contact times of 5 and 10 s. Residual proteinaceous and amyloid contamination were quantified using sensitive microscopic analysis, and immunoblotting was used to characterize the eluted prion residues before and after treatment with the ultrasonically activated stream. FINDINGS: Efficient removal of the different prion strains from the surgical stainless steel surfaces was observed, and reduced levels of protease-susceptible and -resistant prion protein was detected in recovered supernatant. CONCLUSION: This study demonstrated that an ultrasonically activated stream has the potential to be a cost-effective solution to improve current decontamination practices and has the potential to reduce hospital-acquired infections.


Subject(s)
Decontamination/methods , Equipment Contamination , Prions/isolation & purification , Stainless Steel , Ultrasonics , Surgical Instruments , Water
5.
J Acoust Soc Am ; 143(1): 296, 2018 01.
Article in English | MEDLINE | ID: mdl-29390754

ABSTRACT

The subject of acoustic radiation pressure on a gas bubble is important in many applications because it controls how bubbles are moved by acoustic fields to target locations, and often how they act upon the target. Previous theoretical treatments assume a spherical bubble undergoing linear pulsations, but some (such as cleaning using Faraday waves on the bubble wall) require that the bubble be aspherical. Therefore, this paper derives ways to calculate the variation in the radiation pressure due to the non-spherical bubble oscillations. The magnitude and direction of the radiation force are determined by two factors: the amplitude of volume oscillations, Vm, and the phase relationship between those oscillations and the acoustic field which drives them. There are two key findings that correct for the predictions of a model accounting for only linear pulsations. First, the growth of the radiation force slows down as Vm ceases to increase linearly with increasing amplitude of the acoustic wave above the threshold. Second, although both models show that the direction of the force relative of the standing wave antinode can be attractive or repulsive depending on frequency, when distortion modes are included the frequency at which this force changes its sign is shifted.

6.
Proc Math Phys Eng Sci ; 473(2199): 20160828, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28413349

ABSTRACT

A number of queries regarding the paper 'Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air?' (Leighton 2016 Proc. R. Soc. A472, 20150624 (doi:10.1098/rspa.2015.0624)) have been sent in from readers, almost all based around some or all of a small set of questions. These can be grouped into issues of engineering, human factors and timeliness. Those issues (represented by the most typical wording used in queries) and my responses are summarized in this comment.

7.
J Acoust Soc Am ; 140(2): 1469, 2016 08.
Article in English | MEDLINE | ID: mdl-27586771

ABSTRACT

The purpose of this project was to supply an acoustical simulation device to a local planetarium for use in live shows aimed at engaging and inspiring children in science and engineering. The device plays audio simulations of estimates of the sounds produced by natural phenomena to accompany audio-visual presentations and live shows about Venus, Mars, and Titan. Amongst the simulated noise are the sounds of thunder, wind, and cryo-volcanoes. The device can also modify the speech of the presenter (or audience member) in accordance with the underlying physics to reproduce those vocalizations as if they had been produced on the world under discussion. Given that no time series recordings exist of sounds from other worlds, these sounds had to be simulated. The goal was to ensure that the audio simulations were delivered in time for a planetarium's launch show to enable the requested outreach to children. The exercise has also allowed an explanation of the science and engineering behind the creation of the sounds. This has been achieved for young children, and also for older students and undergraduates, who could then debate the limitations of that method.

8.
J Acoust Soc Am ; 140(1): 274, 2016 07.
Article in English | MEDLINE | ID: mdl-27475152

ABSTRACT

A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects.

9.
Proc Math Phys Eng Sci ; 472(2185): 20150624, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26997897

ABSTRACT

New measurements indicate that the public are being exposed, without their knowledge, to airborne ultrasound. Existing guidelines are insufficient for such exposures; the vast majority refers to occupational exposure only (where workers are aware of the exposure, can be monitored and can wear protection). Existing guidelines are based on an insufficient evidence base, most of which was collected over 40 years ago by researchers who themselves considered it insufficient to finalize guidelines, but which produced preliminary guidelines. This warning of inadequacy was lost as nations and organizations issued 'new' guidelines based on these early guidelines, and through such repetition generated a false impression of consensus. The evidence base is so slim that few reports have progressed far along the sequence from anecdote to case study, to formal scientific controlled trials and epidemiological studies. Early studies reported hearing threshold shifts, nausea, headache, fatigue, migraine and tinnitus, but there is insufficient research on human subjects, and insufficient measurement of fields, to assess what health risk current occupational and public exposures might produce. Furthermore, the assumptions underpinning audiology and physical measurements at high frequencies must be questioned: simple extrapolation of approaches used at lower frequencies does not address current unknowns. Recommendations are provided.

10.
Phys Chem Chem Phys ; 17(33): 21709-15, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26234563

ABSTRACT

An investigation of surface cleaning using a swarm of gas bubbles within an acoustically activated stream is presented. Electrolysis of water at Pt microwires (100 µm diameter) to produce both hydrogen and oxygen bubbles is shown to enhance the extent of ultrasonic surface cleaning in a free flowing water stream containing an electrolyte (0.1 M Na2SO4) and low surfactant concentration (2 mM SDS). The surfactant was employed to allow control of the average size of the bubble population within the swarm. The electrochemical bubble swarm (EBS) is shown to perturb acoustic transmission through the stream. To optimise the cleaning process both the ultrasonic field and the electrochemical current are pulsed and synchronized but with different duty cycles. Cleaning action is demonstrated on structured surfaces (porcine skin and finger mimics) loaded with fluorescent particles. This action is shown to be significantly enhanced compared to that found with an inherent bubble population produced by the flow and acoustic regime alone under the same conditions.

11.
Phys Chem Chem Phys ; 17(32): 20574-9, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26200694

ABSTRACT

In the absence of sufficient cleaning of medical instruments, contamination and infection can result in serious consequences for the health sector and remains a significant unmet challenge. In this paper we describe a novel cleaning system reliant on cavitation action created in a free flowing fluid stream where ultrasonic transmission to a surface, through the stream, is achieved using careful design and control of the device architecture, sound field and the materials employed. Cleaning was achieved with purified water at room temperature, moderate fluid flow rates and without the need for chemical additives or the high power consumption associated with conventional strategies. This study illustrates the potential in harnessing an ultrasonically activated stream to remove biological contamination including brain tissue from surgical stainless steel substrates, S. epidermidis biofilms from glass, and fat/soft tissue matter from bone structures with considerable basic and clinical applications.


Subject(s)
Biofilms , Brain/metabolism , Proteins/metabolism , Staphylococcus epidermidis/metabolism , Ultrasonics , Water/metabolism , Animals , Mice , Mice, Inbred C57BL , Proteins/chemistry , Stainless Steel/chemistry , Temperature , Water/chemistry
12.
J Dent Res ; 94(9): 1303-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26056055

ABSTRACT

Acidogenic bacteria within dental plaque biofilms are the causative agents of caries. Consequently, maintenance of a healthy oral environment with efficient biofilm removal strategies is important to limit caries, as well as halt progression to gingivitis and periodontitis. Recently, a novel cleaning device has been described using an ultrasonically activated stream (UAS) to generate a cavitation cloud of bubbles in a freely flowing water stream that has demonstrated the capacity to be effective at biofilm removal. In this study, UAS was evaluated for its ability to remove biofilms of the cariogenic pathogen Streptococcus mutans UA159, as well as Actinomyces naeslundii ATCC 12104 and Streptococcus oralis ATCC 9811, grown on machine-etched glass slides to generate a reproducible complex surface and artificial teeth from a typodont training model. Biofilm removal was assessed both visually and microscopically using high-speed videography, confocal scanning laser microscopy (CSLM), and scanning electron microscopy (SEM). Analysis by CSLM demonstrated a statistically significant 99.9% removal of S. mutans biofilms exposed to the UAS for 10 s, relative to both untreated control biofilms and biofilms exposed to the water stream alone without ultrasonic activation (P < 0.05). The water stream alone showed no statistically significant difference in removal compared with the untreated control (P = 0.24). High-speed videography demonstrated a rapid rate (151 mm(2) in 1 s) of biofilm removal. The UAS was also highly effective at S. mutans, A. naeslundii, and S. oralis biofilm removal from machine-etched glass and S. mutans from typodont surfaces with complex topography. Consequently, UAS technology represents a potentially effective method for biofilm removal and improved oral hygiene.


Subject(s)
Biofilms , Ultrasonics , Water , Dental Plaque/microbiology , Humans , Microscopy, Electron, Scanning , Streptococcus mutans/isolation & purification
13.
J Acoust Soc Am ; 136(2): 502-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25096085

ABSTRACT

The need to measure the dynamic void fraction (the proportion of flowing bubbly liquid that is gas) is common across many power, processing and manufacturing industries. Many such pipelines and liquids are optically opaque, and work on margins that require a low cost solution that is not commensurate with the size of the challenge. Such a solution will therefore be a compromise, and in this paper costs are reduced by using a narrowband acoustic solution that cannot, on its own, contain enough information to characterize the void fraction in real time unambiguously. The ambiguity is reduced using likely estimates of the general shape of the bubble size distribution so that, with a single source-receiver pair attached to the outside of the pipe, the absolute gas content can be estimated. While the data that are required a priori (the general shape of the bubble size distribution) are not identical to the output of the inversion (the absolute void fraction of gas entrained as bubbles in the flow), the requirement for such a priori information could limit the usefulness of the technique in industry.

14.
J Acoust Soc Am ; 131(3): 2539-42, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22423805

ABSTRACT

The air/water interface at the top of a body of water is often treated from below as a pressure release boundary, which it closely matches. The small discrepancy in that match, however, is enough to enable humans in air to hear sounds generated underwater, which would not be possible across a pressure release boundary. A discussion of this phenomenon, designed for teaching purposes and using no more acoustics than would be contained in a first-year undergraduate syllabus in acoustics, leads to a discussion of whether goldfish can hear their owners speaking. The analysis is then used to illustrate the care needed when comparing sound levels in air and water, a process which continues to lead to erroneous statements in the media and some academic articles.


Subject(s)
Goldfish/physiology , Hearing/physiology , Sound , Air , Animals , Humans , Water
15.
J Acoust Soc Am ; 131(3): 2551-5, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22423807

ABSTRACT

The existence of extra-terrestrial oceans offers the opportunities to set examination questions for which students in underwater acoustics do not already know the answers. The limited set of scenarios in Earth's oceans that can be presented to students as tractable examination questions means that, rather than properly assessing the individual scenario, students can rely on knowledge from previous examples in assessing, for example, which terms in equations are large and small, and what numerical values the answers are likely to take. The habit of adapting previous solutions with which the student is comfortable, to new scenarios, is not a safe approach to learn, as it ill equips the future scientist or engineer to identify and tackle problems which contain serious departures from their experience.

16.
J Acoust Soc Am ; 130(5): 3333-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22088006

ABSTRACT

Equations resembling the Rayleigh-Plesset and Keller-Miksis equations are frequently used to model bubble dynamics in confined spaces, using the standard inertial term RR+3R([middle dot]) (2)/2, where R is the bubble radius. This practice has been widely assumed to be defensible if the bubble is much smaller than the radius of the confining vessel. This paper questions this assumption, and provides a simple rigid wall model for worst-case quantification of the effect on the inertial term of the specific confinement geometry. The relevance to a range of scenarios (including bubbles confined in microfluidic devices; or contained in test chambers for insonification or imaging; or in blood vessels) is discussed.


Subject(s)
Acoustics/instrumentation , Models, Theoretical , Equipment Design , Gases , Motion , Particle Size , Pressure , Time Factors
17.
J Acoust Soc Am ; 130(5): 3431-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22088017

ABSTRACT

Twin inverted pulse sonar (TWIPS) is here deployed in the wake of a moored rigid inflatable boat (RIB) with propeller turning, and then in the wake of a moving tanker of 4580 dry weight tonnage (the Whitchallenger). This is done first to test its ability to distinguish between scatter from the wake and scatter from the seabed, and second to test its ability to improve detectability of the seabed through the wake, compared to conventional sonar processing techniques. TWIPS does this by distinguishing between linear and nonlinear scatterers and has the further property of distinguishing those nonlinear targets which scatter energy at the even-powered harmonics from those which scatter in the odd-powered harmonics. TWIPS can also, in some manifestations, require no range correction (and therefore does not require the a priori environment knowledge necessary for most remote detection technologies).


Subject(s)
Linear Models , Noise, Transportation , Nonlinear Dynamics , Ships , Signal Processing, Computer-Assisted , Ultrasonics , Computer Simulation , Equipment Design , Geologic Sediments , Motion , Numerical Analysis, Computer-Assisted , Oceans and Seas , Pressure , Scattering, Radiation , Sound Spectrography , Time Factors , Ultrasonics/instrumentation , Water
18.
Proc Inst Mech Eng H ; 224(2): 317-42, 2010.
Article in English | MEDLINE | ID: mdl-20349822

ABSTRACT

Shock wave lithotripsy (SWL) is the process of fragmentation of renal or ureteric stones by the use of repetitive shock waves generated outside the body and focused onto the stone. Following its introduction in 1980, SWL revolutionized the treatment of kidney stones by offering patients a non-invasive procedure. It is now seen as a mature technology and its use is perceived to be routine. It is noteworthy that, at the time of its introduction, there was a great effort to discover the mechanism(s) by which it works, and the type of sound field that is optimal. Although nearly three decades of subsequent research have increased the knowledge base significantly, the mechanisms are still controversial. Furthermore there is a growing body of evidence that SWL results in injury to the kidney which may have long-term side effects, such as new onset hypertension, although again there is much controversy within the field. Currently, use of lithotripsy is waning, particularly with the advent of minimally invasive ureteroscopic approaches. The goal here is to review the state of the art in SWL and to present the barriers and challenges that need to be addressed for SWL to deliver on its initial promise of a safe, effective, non-invasive treatment for kidney stones.


Subject(s)
Kidney Calculi/therapy , Kidney/injuries , Lithotripsy/adverse effects , Lithotripsy/methods , Models, Biological , Sonication/adverse effects , Sonication/methods , Animals , Computer Simulation , Forecasting , Humans , Lithotripsy/trends , Sonication/trends
19.
J Acoust Soc Am ; 125(5): EL214-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19425625

ABSTRACT

This paper shows that corrections for fluid loading must be undertaken to Earth-based calibrations for planetary probe sensors, which rely on accurate and precise predictions of mechanical vibrations. These sensors include acoustical instrumentation, and sensors for the mass change resulting from species accumulation upon oscillating plates. Some published designs are particularly susceptible (an example leading to around an octave error in the frequency calibration for Venus is shown). Because such corrections have not previously been raised, and would be almost impossible to incorporate into drop tests of probes, this paper demonstrates the surprising results of applying well-established formulations.

20.
J Acoust Soc Am ; 124(5): EL313-20, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19045684

ABSTRACT

Bubbles of gas (usually methane) in marine sediments affect the load-bearing properties of the seabed and act as a natural reservoir of "greenhouse" gas. This paper describes a simple method which can be applied to historical and future subbottom profiles to infer bubble void fractions and map the vertical and horizontal distributions of gassy sediments, and the associated sound speed perturbations, even with single-frequency insonification. It operates by identifying horizontal features in the geology and interpreting any perceived change of depth in these as a bubble-mediated change in sound speed.


Subject(s)
Gases/analysis , Geologic Sediments , Methane/analysis , Sound , Geology , Greenhouse Effect , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...