Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766211

ABSTRACT

Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.

2.
Nutrition ; 87-88: 111189, 2021.
Article in English | MEDLINE | ID: mdl-33744645

ABSTRACT

OBJECTIVES: Nicotinamide adenine dinucleotide (NAD+), an essential cofactor for mitochondrial function, declines with aging, which may lead to impaired physical performance. Nicotinamide riboside (NR), a NAD+ precursor, restores cellular NAD+ levels. The aim of this study was to examine the effects of short-term NR supplementation on physical performance in middle-aged mice and the effects on mouse and human muscle stem cells. METHODS: We treated 15-mo-old male C57BL/6J mice with NR at 300 mg·kg·d-1 (NR3), 600 mg·kg·d-1 (NR6), or placebo (PLB), n = 8 per group, and assessed changes in physical performance, muscle histology, and NAD+ content after 4 wk of treatment. RESULTS: NR increased total NAD+ in muscle tissue (NR3 P = 0.01; NR6 P = 0.004, both versus PLB), enhanced treadmill endurance and open-field activity, and prevented decline in grip strength. Histologic analysis revealed NR-treated mice exhibited enlarged slow-twitch fibers (NR6 versus PLB P = 0.014; NR3 P = 0.16) and a trend toward more slow fibers (NR3 P = 0.14; NR6 P = 0.22). We next carried out experiments to characterize NR effects on mitochondrial activity and cellular energetics in vitro. We observed that NR boosted basal and maximal cellular aerobic and anaerobic respiration in both mouse and human myoblasts and human myotubes. Additionally, NR treatment improved the differentiating capacity of myoblasts and increased myotube size and fusion index upon stimulation of these progenitors to form multinucleated myotubes. CONCLUSION: These findings support a role for NR in improving cellular energetics and functional capacity in mice, which support the translation of this work into clinical settings as a strategy for improving and/or maintaining health span during aging.


Subject(s)
Muscle, Skeletal , Niacinamide , Animals , Male , Mice , Mice, Inbred C57BL , NAD , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pyridinium Compounds
3.
Mech Ageing Dev ; 180: 49-62, 2019 06.
Article in English | MEDLINE | ID: mdl-30951786

ABSTRACT

Frailty syndrome increases the risk for disability and mortality, and is a major health concern amidst the geriatric shift in the population. High intensity interval training (HIIT), which couples bursts of vigorous activity interspersed with active recovery intervals, shows promise for the treatment of frailty. Here we compare and contrast five Fried physical phenotype and one deficit accumulation based mouse frailty assessment tools for identifying the impacts of HIIT on frailty and predicting functional capacity, underlying pathology, and survival in aged female mice. Our data reveal a 10-minute HIIT regimen administered 3-days-a-week for 8-weeks increased treadmill endurance, gait speed and maintained grip strength. One frailty tool identified a benefit of HIIT for frailty, but many were trending suggesting HIIT was beneficial for physical performance in these mice, but the 8-week timeframe may have been insufficient to induce frailty benefits. Finally, most frailty tools distinguished between surviving or non-surviving mice, whereas half correlated with functional capacity measured by nest building ability, and none correlated with underlying pathology. In summary, this study supports the ongoing development of mouse assessment tools as useful instruments for frailty research.


Subject(s)
Frailty/pathology , Frailty/physiopathology , Frailty/therapy , Physical Conditioning, Animal , Animals , Female , Mice
4.
J Vis Exp ; (144)2019 02 02.
Article in English | MEDLINE | ID: mdl-30774134

ABSTRACT

High intensity interval training (HIIT) is emerging as a therapeutic approach to prevent, delay, or ameliorate frailty. In particular short session HIIT, with regimens less than or equal to 10 min is of particular interest as several human studies feature routines as short as a few minutes a couple times a week. However, there is a paucity of animal studies that model the impacts of short session HIIT. Here, we describe a methodology for an individually tailored and progressive short session HIIT regimen of 10 min given 3 days a week for aged mice using an inclined treadmill. Our methodology also includes protocols for treadmill assessment. Mice are initially acclimatized to the treadmill and then given baseline flat and uphill treadmill assessments. Exercise sessions begin with a 3 min warm-up, then three intervals of 1 min at a fast pace, followed by 1 min at an active recovery pace. Following these intervals, the mice are given a final segment that starts at the fast pace and accelerates for 1 min. The HIIT protocol is individually tailored as the speed and intensity for each mouse are determined based upon initial anaerobic assessment scores. Additionally, we detail the conditions for increasing or decreasing the intensity for individual mice depending on performance. Finally, intensity is increased for all mice every two weeks. We previously reported in this protocol enhanced physical performance in aged male mice and here show it also increases treadmill performance in aged female mice. Advantages of our protocol include low administration time (about 15 min per 6 mice, 3 days a week), strategy for individualizing for mice to better model prescribed exercise, and a modular design that allows for the addition or removal of the number and length of intervals to titrate exercise benefits.


Subject(s)
Exercise Test/methods , High-Intensity Interval Training/methods , Physical Conditioning, Animal/methods , Aged , Animals , Humans , Mice
5.
Aging (Albany NY) ; 10(6): 1338-1355, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29905532

ABSTRACT

Vitamin D insufficiency (serum 25-OH vitamin D < 30 ng/ml) affects 70-80% of the general population, yet the long-term impacts on physical performance and the progression of sarcopenia are poorly understood. We therefore followed 6-month-old male C57BL/6J mice (n=6) consuming either sufficient (STD, 1000 IU) or insufficient (LOW, 125 IU) vitamin D3/kg chow for 12 months (equivalent to 20-30 human years). LOW supplemented mice exhibited a rapid decline of serum 25-OH vitamin D levels by two weeks that remained between 11-15 ng/mL for all time points thereafter. After 12 months LOW mice displayed worse grip endurance (34.6 ± 14.1 versus 147.5 ± 50.6 seconds, p=0.001), uphill sprint speed (16.0 ± 1.0 versus 21.8 ± 2.4 meters/min, p=0.0007), and stride length (4.4 ± 0.3 versus 5.1 ± 0.3, p=0.002). LOW mice also showed less lean body mass after 8 months (57.5% ± 5.1% versus 64.5% ± 4.0%, p=0.023), but not after 12 months of supplementation, as well as greater protein expression of atrophy pathway gene atrogin­1. Additionally, microRNA sequencing revealed differential expression of mIR­26a in muscle tissue of LOW mice. These data suggest chronic vitamin D insufficiency may be an important factor contributing to functional decline and sarcopenia.


Subject(s)
Body Composition/drug effects , Bone Density Conservation Agents/pharmacology , Muscle Strength/drug effects , Vitamin D Deficiency/physiopathology , Vitamin D/pharmacology , Vitamins/pharmacology , Animals , Bone Density , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/blood , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Inflammation/blood , Male , Mice , Mice, Inbred C57BL , Muscle Proteins/genetics , Muscle Proteins/metabolism , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Vitamin D/administration & dosage , Vitamin D/blood , Vitamin D Deficiency/diet therapy , Vitamins/administration & dosage , Vitamins/blood
6.
J Gerontol A Biol Sci Med Sci ; 73(4): 429-437, 2018 03 14.
Article in English | MEDLINE | ID: mdl-28633487

ABSTRACT

Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and end point assessments included body composition, physical performance, and frailty based on criteria from the Fried physical frailty scale. HIIT-trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% vs -3.9% in sedentary mice), treadmill endurance (32.6% vs -2.0%), and gait speed (107.0% vs 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise led to a dramatic reduction in frailty scores in five of six mice that were frail or prefrail at baseline, with four ultimately becoming nonfrail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to performance gains, improvement in underlying muscle physiology, and reduction in frailty.


Subject(s)
Frailty , High-Intensity Interval Training , Physical Functional Performance , Animals , Male , Mice , Absorptiometry, Photon , Body Composition , Exercise Test , Mice, Inbred C57BL , Mitochondria, Muscle , Muscle, Skeletal/anatomy & histology , Random Allocation
7.
Stem Cells Int ; 2016: 6940195, 2016.
Article in English | MEDLINE | ID: mdl-27738436

ABSTRACT

A major problem in translating stem cell therapeutics is the difficulty of producing stable, long-term severe left ventricular (LV) dysfunction in a large animal model. For that purpose, extensive infarction was created in sinclair miniswine by injecting microspheres (1.5 × 106 microspheres, 45 µm diameter) in LAD. At 2 months after embolization, animals (n = 11) were randomized to receive allogeneic cardiosphere-derived cells derived from atrium (CDCs: 20 × 106, n = 5) or saline (untreated, n = 6). Four weeks after therapy myocardial function, myocyte proliferation (Ki67), mitosis (phosphor-Histone H3; pHH3), apoptosis, infarct size (TTC), myocyte nuclear density, and cell size were evaluated. CDCs injected into infarcted and remodeled remote myocardium (global infusion) increased regional function and global function contrasting no change in untreated animals. CDCs reduced infarct volume and stimulated Ki67 and pHH3 positive myocytes in infarct and remote regions. As a result, myocyte number (nuclear density) increased and myocyte cell diameter decreased in both infarct and remote regions. Coronary microembolization produces stable long-term ischemic cardiomyopathy. Global infusion of CDCs stimulates myocyte regeneration and improves left ventricular ejection fraction. Thus, global infusion of CDCs could become a new therapy to reverse LV dysfunction in patients with asymptomatic heart failure.

8.
Circ Res ; 117(7): 634-44, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26271689

ABSTRACT

RATIONALE: Allogeneic bone marrow-derived mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs) have each entered clinical trials, but a direct comparison of these cell types has not been performed in a large animal model of hibernating myocardium. OBJECTIVE: Using completely blinded methodology, we compared the efficacy of global intracoronary allogeneic MSCs (icMSCs, ≈35×10(6)) and CDCs (icCDCs, ≈35×10(6)) versus vehicle in cyclosporine-immunosuppressed swine with a chronic left anterior descending coronary artery stenosis (n=26). METHODS AND RESULTS: Studies began 3 months after instrumentation when wall thickening was reduced (left anterior descending coronary artery % wall thickening [mean±SD], 38±11% versus 83±26% in remote; P<0.01) and similar among groups. Four weeks after treatment, left anterior descending coronary artery % wall thickening increased similarly after icCDCs and icMSCs, whereas it remained depressed in vehicle-treated controls (icMSCs, 51±13%; icCDCs, 51±17%; vehicle, 34±3%, treatments P<0.05 versus vehicle). There was no change in myocardial perfusion. Both icMSCs and icCDCs increased left anterior descending coronary artery myocyte nuclear density (icMSCs, 1601±279 nuclei/mm(2); icCDCs, 1569±294 nuclei/mm(2); vehicle, 973±181 nuclei/mm(2); treatments P<0.05 versus vehicle) and reduced myocyte diameter (icMSCs, 16.4±1.5 µm; icCDCs, 16.8±1.2 µm; vehicle, 20.2±3.7 µm; treatments P<0.05 versus vehicle) to the same extent. Similar changes in myocyte nuclear density and diameter were observed in the remote region of cell-treated animals. Cell fate analysis using Y-chromosome fluorescent in situ hybridization demonstrated rare cells from sex-mismatched donors. CONCLUSIONS: Allogeneic icMSCs and icCDCs exhibit comparable therapeutic efficacy in a large animal model of hibernating myocardium. Both cell types produced equivalent increases in regional function and stimulated myocyte regeneration in ischemic and remote myocardium. The activation of endogenous myocyte proliferation and regression of myocyte cellular hypertrophy support a common mechanism of cardiac repair.


Subject(s)
Coronary Vessels , Mesenchymal Stem Cell Transplantation/methods , Myocardial Stunning/therapy , Myocytes, Cardiac/transplantation , Animals , Cell Proliferation/physiology , Coronary Vessels/pathology , Injections, Intra-Arterial , Myocardial Stunning/pathology , Swine , Transplantation, Homologous , Treatment Outcome
9.
PLoS One ; 9(11): e113009, 2014.
Article in English | MEDLINE | ID: mdl-25402428

ABSTRACT

BACKGROUND: Cardiosphere-derived cells (CDCs) improve ventricular function and reduce fibrotic volume when administered via an infarct-related artery using the "stop-flow" technique. Unfortunately, myocyte loss and dysfunction occur globally in many patients with ischemic and non-ischemic cardiomyopathy, necessitating an approach to distribute CDCs throughout the entire heart. We therefore determined whether global intracoronary infusion of CDCs under continuous flow improves contractile function and stimulates new myocyte formation. METHODS AND RESULTS: Swine with hibernating myocardium from a chronic LAD occlusion were studied 3-months after instrumentation (n = 25). CDCs isolated from myocardial biopsies were infused into each major coronary artery (∼ 33 × 10(6) icCDCs). Global icCDC infusion was safe and while ∼ 3% of injected CDCs were retained, they did not affect ventricular function or myocyte proliferation in normal animals. In contrast, four-weeks after icCDCs were administered to animals with hibernating myocardium, %LADWT increased from 23 ± 6 to 51 ± 5% (p<0.01). In diseased hearts, myocyte proliferation (phospho-histone-H3) increased in hibernating and remote regions with a concomitant increase in myocyte nuclear density. These effects were accompanied by reductions in myocyte diameter consistent with new myocyte formation. Only rare myocytes arose from sex-mismatched donor CDCs. CONCLUSIONS: Global icCDC infusion under continuous flow is feasible and improves contractile function, regresses myocyte cellular hypertrophy and increases myocyte proliferation in diseased but not normal hearts. New myocytes arising via differentiation of injected cells are rare, implicating stimulation of endogenous myocyte regeneration as the primary mechanism of repair.


Subject(s)
Cardiomyopathies/pathology , Coronary Vessels/pathology , Heart/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/transplantation , Regeneration/physiology , Ventricular Function/physiology , Animals , Cell Proliferation , Coronary Circulation , Flow Cytometry , Immunoenzyme Techniques , Infusions, Intra-Arterial , Myocardial Contraction , Swine , Transplantation, Homologous
10.
Transplantation ; 87(9): 1275-82, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19424025

ABSTRACT

BACKGROUND: The use of nonautologous stem cells isolated from healthy donors for stem-cell therapy is an attractive approach, because the stem cells can be culture expanded in advance, thoroughly tested, and formulated into off-the-shelf medicine. However, human leukocyte antigen compatibility and related immunosuppressive protocols can compromise therapeutic efficacy and cause unwanted side effects. METHODS: Mesenchymal stem cells (MSCs) have been postulated to possess unique immune regulatory function. We explored the immunomodulatory property of human and porcine MSCs for the treatment of delta-sarcoglycan-deficient dystrophic hamster muscle without immunosuppression. Circulating and tissue markers of inflammation were analyzed. Muscle regeneration and stem-cell fate were characterized. RESULTS: Total white blood cell counts and leukocyte-distribution profiles were similar among the saline- and MSC-injected dystrophic hamsters 1 month posttreatment. Circulating levels of immunoglobulin A, vascular cell adhesion molecule-1, myeloperoxidase, and major cytokines involved in inflammatory response were not elevated by MSCs, nor were expression of the leukocyte common antigen CD45 and the cytokine transcriptional activator NF-kappaB in the injected muscle. Treated muscles exhibited increased cell-cycle activity and attenuated oxidative stress. Injected MSCs were found to be trapped in the musculature, contribute to both preexisting and new muscle fibers, and mediates capillary formation. CONCLUSIONS: Intramuscular injection of nonautologous MSCs can be safely used for the treatment of dystrophic muscle in immunocompetent hosts without inflaming the host immune system.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/surgery , Transplantation, Heterologous/methods , Animals , Bone Marrow Transplantation , Cricetinae , Humans , Immunosuppressive Agents/therapeutic use , Injections, Intramuscular , Lipid Peroxidation , Male , Muscular Dystrophy, Animal/immunology , Regeneration , Reverse Transcriptase Polymerase Chain Reaction , Sarcoglycans/deficiency , Tissue Donors
11.
Cell Transplant ; 17(8): 911-22, 2008.
Article in English | MEDLINE | ID: mdl-19069634

ABSTRACT

Therapeutic implantation of mesenchymal stem cells (MSCs) is entering the realm of clinical trials for several human diseases, and yet much remains uncertain regarding their dynamic distribution and cell fate after in vivo application. Discrepancies in the literature can be attributed in part to the use of different cell labeling/tracking methods and cell administration protocols. To identify a stem cell detection method suitable for myocardial implantation in a large animal model, we experimented on three different MSC labeling methods: adenovirus-mediated expression of enhanced green fluorescence protein (EGFP) and beta-galactosidase (LacZ), and nuclear staining with DAPI. Intramuscular and intracoronary administrations of labeled porcine MSCs identified the nuclear affinity dye to be a reliable stem cell tracking marker. Stem cell identification is facilitated by an optimized live cell labeling condition generating bright blue fluorescence sharply confined to the nucleus. DAPI-labeled MSCs retained full viability, ceased proliferation, and exhibited an increased differentiation potential. The labeled MSCs remained fully active in expressing key growth factor and cytokine genes, and notably exhibited enhanced expression of the chemokine receptor CXCR4 and its ligand SDF1, indicating their competency in response to tissue injury. Histological analysis revealed that approximately half a million MSCs or approximately 2% of the administered MSCs remained localized in the normal pig heart 2 weeks after coronary infusion. That the vast majority of these identified MSCs were interstitial indicated the ability of MSCs to migrate across the coronary endothelium. No evidence was obtained indicating MSC differentiation to cardiomyocyte.


Subject(s)
Cell Nucleus/ultrastructure , Fluorescent Dyes/pharmacokinetics , Genes, Reporter/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Staining and Labeling/methods , Animals , Cell Differentiation/physiology , Cells, Cultured , Coronary Vessels/surgery , Cytokines/metabolism , Genetic Vectors/genetics , Graft Survival/physiology , Green Fluorescent Proteins/genetics , Infusions, Intra-Arterial/methods , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mesenchymal Stem Cells/cytology , Mice , Microscopy, Fluorescence/methods , Receptors, Cytokine/metabolism , Sus scrofa , Transfection/methods , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL