Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 281, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31937798

ABSTRACT

Little attention was given to the interaction between tumor and stromal cells in urothelial bladder carcinoma (UBC). While recent studies point towards the existence of different fibroblast subsets, no comprehensive analyses linking different fibroblast markers to UBC patient survival have been performed so far. Through immunohistochemical analysis of five selected fibroblast markers, namely alpha smooth muscle actin (ASMA), CD90/Thy-1, fibroblast activation protein (FAP), platelet derived growth factor receptor-alpha and -beta (PDGFRa,-b), this study investigates their association with survival and histopathological characteristics in a cohort of 344 UBC patients, involving both, muscle-invasive and non-muscle-invasive cases. The data indicates that combinations of stromal markers are more suited to identify prognostic patient subgroups than single marker analysis. Refined stroma-marker-based patient stratification was achieved through cluster analysis and identified a FAP-dominant patient cluster as independent marker for shorter 5-year-survival (HR(95% CI)2.25(1.08-4.67), p = 0.030). Analyses of interactions between fibroblast and CD8a-status identified a potential minority of cases with CD90-defined stroma and high CD8a infiltration showing a good prognosis of more than 80% 5-year-survival. Presented analyses point towards the existence of different stroma-cell subgroups with distinct tumor-modulatory properties and motivate further studies aiming to better understand the molecular tumor-stroma crosstalk in UBC.


Subject(s)
Fibroblasts/metabolism , Urinary Bladder Neoplasms/pathology , Actins/metabolism , Aged , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cluster Analysis , Endopeptidases , Female , Fibroblasts/cytology , Gelatinases/metabolism , Humans , Kaplan-Meier Estimate , Male , Membrane Proteins/metabolism , Phenotype , Prognosis , Proportional Hazards Models , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Serine Endopeptidases/metabolism , Thy-1 Antigens/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/mortality
2.
Glia ; 68(2): 316-327, 2020 02.
Article in English | MEDLINE | ID: mdl-31509308

ABSTRACT

Glioblastoma (GBM) is a deadly disease with a need for deeper understanding and new therapeutic approaches. The microenvironment of glioblastoma has previously been shown to guide glioblastoma progression. In this study, astrocytes were investigated with regard to their effect on glioblastoma proliferation through correlative analyses of clinical samples and experimental in vitro and in vivo studies. Co-culture techniques were used to investigate the GBM growth enhancing potential of astrocytes. Cell sorting and RNA sequencing were used to generate a GBM-associated astrocyte signature and to investigate astrocyte-induced GBM genes. A NOD scid GBM mouse model was used for in vivo studies. A gene signature reflecting GBM-activated astrocytes was associated with poor prognosis in the TCGA GBM dataset. Two genes, periostin and serglycin, induced in GBM cells upon exposure to astrocytes were expressed at higher levels in cases with high "astrocyte signature score". Astrocytes were shown to enhance glioblastoma cell growth in cell lines and in a patient-derived culture, in a manner dependent on cell-cell contact and involving increased cell proliferation. Furthermore, co-injection of astrocytes with glioblastoma cells reduced survival in an orthotopic GBM model in NOD scid mice. In conclusion, this study suggests that astrocytes contribute to glioblastoma growth and implies this crosstalk as a candidate target for novel therapies.


Subject(s)
Astrocytes/metabolism , Brain Neoplasms/metabolism , Cell Movement/physiology , Glioblastoma/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/physiology , Coculture Techniques , Disease Models, Animal , Glioblastoma/pathology , Glioma/metabolism , Humans , Mice, Inbred NOD
SELECTION OF CITATIONS
SEARCH DETAIL
...