Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575959

ABSTRACT

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Subject(s)
Alzheimer Disease , Tauopathies , Aged , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cathepsin D , Disease Models, Animal , Mice, Knockout , Mice, Transgenic , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism
3.
Res Sq ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961253

ABSTRACT

Background: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. Methods: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model characterized by pronounced lysosomal dysfunction (Krabbe A). Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. Results: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatDKO mice were found to develop prominent tauopathy by just ~ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology in aged JNPL3 mice. CatDKO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (~ 1250%) are present in CatD-KO mice, but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. Conclusions: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, CatD-KO mice are the only model to develop detectable Aß acumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.

4.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047718

ABSTRACT

Commonly employed methods for reversibly disrupting gene expression, such as those based on RNAi or CRISPRi, are rarely capable of achieving >80-90% downregulation, making them unsuitable for targeting genes that require more complete disruption to elicit a phenotype. Genetic deletion, on the other hand, while enabling complete disruption of target genes, often produces undesirable irreversible consequences such as cytotoxicity or cell death. Here we describe the design, development, and detailed characterization of a dual-function "TRE-Lox" system for effecting either (a) doxycycline (Dox)-mediated downregulation or (b) genetic deletion of a target gene-the lysosomal aspartyl protease cathepsin D (CatD)-based on targeted insertion of a tetracycline-response element (TRE) and two LoxP sites into the 5' end of the endogenous CatD gene (CTSD). Using an optimized reverse-tetracycline transrepressor (rtTR) variant fused with the Krüppel-associated box (KRAB) domain, we show that CatD expression can be disrupted by as much as 98% in mouse embryonic fibroblasts (MEFs). This system is highly sensitive to Dox (IC50 = 1.46 ng/mL) and results in rapid (t1/2 = 0.57 d) and titratable downregulation of CatD. Notably, even near-total disruption of CatD expression was completely reversed by withdrawal of Dox. As expected, transient expression of Cre recombinase results in complete deletion of the CTSD gene. The dual functionality of this novel system will facilitate future studies of the involvement of CatD in various diseases, particularly those attributable to partial loss of CatD function. In addition, the TRE-Lox approach should be applicable to the regulation of other target genes requiring more complete disruption than can be achieved by traditional methods.


Subject(s)
Cathepsin D , Fibroblasts , Animals , Mice , Cathepsin D/genetics , Cathepsin D/metabolism , Down-Regulation/genetics , Fibroblasts/metabolism , Tetracycline , Doxycycline/pharmacology , Response Elements
5.
Diabetologia ; 65(8): 1375-1389, 2022 08.
Article in English | MEDLINE | ID: mdl-35652923

ABSTRACT

AIMS/HYPOTHESIS: Type 2 diabetes is characterised by hyperglucagonaemia and perturbed function of pancreatic glucagon-secreting alpha cells but the molecular mechanisms contributing to these phenotypes are poorly understood. Insulin-degrading enzyme (IDE) is present within all islet cells, mostly in alpha cells, in both mice and humans. Furthermore, IDE can degrade glucagon as well as insulin, suggesting that IDE may play an important role in alpha cell function in vivo. METHODS: We have generated and characterised a novel mouse model with alpha cell-specific deletion of Ide, the A-IDE-KO mouse line. Glucose metabolism and glucagon secretion in vivo was characterised; isolated islets were tested for glucagon and insulin secretion; alpha cell mass, alpha cell proliferation and α-synuclein levels were determined in pancreas sections by immunostaining. RESULTS: Targeted deletion of Ide exclusively in alpha cells triggers hyperglucagonaemia and alpha cell hyperplasia, resulting in elevated constitutive glucagon secretion. The hyperglucagonaemia is attributable in part to dysregulation of glucagon secretion, specifically an impaired ability of IDE-deficient alpha cells to suppress glucagon release in the presence of high glucose or insulin. IDE deficiency also leads to α-synuclein aggregation in alpha cells, which may contribute to impaired glucagon secretion via cytoskeletal dysfunction. We showed further that IDE deficiency triggers impairments in cilia formation, inducing alpha cell hyperplasia and possibly also contributing to dysregulated glucagon secretion and hyperglucagonaemia. CONCLUSIONS/INTERPRETATION: We propose that loss of IDE function in alpha cells contributes to hyperglucagonaemia in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Insulin-Secreting Cells , Insulysin , Animals , Cell Proliferation/genetics , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Hyperplasia/genetics , Hyperplasia/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulysin/genetics , Insulysin/metabolism , Mice , alpha-Synuclein/metabolism
6.
Cells ; 10(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34572094

ABSTRACT

More than seven decades have passed since the discovery of a proteolytic activity within crude tissue extracts that would become known as insulin-degrading enzyme (IDE). Certainly much has been learned about this atypical zinc-metallopeptidase; at the same time, however, many quite fundamental gaps in our understanding remain. Herein, I outline what I consider to be among the most critical unresolved questions within the field, many presenting as intriguing paradoxes. For instance, where does IDE, a predominantly cytosolic protein with no signal peptide or clearly identified secretion mechanism, interact with insulin and other extracellular substrates? Where precisely is IDE localized within the cell, and what are its functional roles in these compartments? How does IDE, a bowl-shaped protein that completely encapsulates its substrates, manage to avoid getting "clogged" and thus rendered inactive virtually immediately? Although these paradoxes are by definition unresolved, I offer herein my personal insights and informed speculations based on two decades working on the biology and pharmacology of IDE and suggest specific experimental strategies for addressing these conundrums. I also offer what I believe to be especially fruitful avenues for investigation made possible by the development of new technologies and IDE-specific reagents. It is my hope that these thoughts will contribute to continued progress elucidating the physiology and pathophysiology of this important peptidase.


Subject(s)
Insulin/metabolism , Insulysin/chemistry , Insulysin/metabolism , Animals , Humans , Insulysin/genetics
7.
Cells ; 10(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34572095

ABSTRACT

Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed Zn2+-metallopeptidase that regulates hepatic insulin sensitivity, albeit its regulation in response to the fasting-to-postprandial transition is poorly understood. In this work, we studied the regulation of IDE mRNA and protein levels as well as its proteolytic activity in the liver, skeletal muscle, and kidneys under fasting (18 h) and refeeding (30 min and 3 h) conditions, in mice fed a standard (SD) or high-fat (HFD) diets. In the liver of mice fed an HFD, fasting reduced IDE protein levels (~30%); whereas refeeding increased its activity (~45%) in both mice fed an SD and HFD. Likewise, IDE protein levels were reduced in the skeletal muscle (~30%) of mice fed an HFD during the fasting state. Circulating lactate concentrations directly correlated with hepatic IDE activity and protein levels. Of note, L-lactate in liver lysates augmented IDE activity in a dose-dependent manner. Additionally, IDE protein levels in liver and muscle tissues, but not its activity, inversely correlated (R2 = 0.3734 and 0.2951, respectively; p < 0.01) with a surrogate marker of insulin resistance (HOMA index). Finally, a multivariate analysis suggests that circulating insulin, glucose, non-esterified fatty acids, and lactate levels might be important in regulating IDE in liver and muscle tissues. Our results highlight that the nutritional regulation of IDE in liver and skeletal muscle is more complex than previously expected in mice, and that fasting/refeeding does not strongly influence the regulation of renal IDE.


Subject(s)
Fasting , Feeding Behavior , Gene Expression Regulation , Insulin/metabolism , Insulysin/genetics , Insulysin/metabolism , Animals , Diet, High-Fat , Glucose/metabolism , Insulin Resistance , Kidney/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Organ Specificity , Postprandial Period
8.
J Exp Neurol ; 2(1): 10-15, 2021.
Article in English | MEDLINE | ID: mdl-33665647

ABSTRACT

Alzheimer disease (AD) is a debilitating neurodegenerative disorder characterized by extracellular deposition of the amyloid ß-protein (Aß) and intraneuronal accumulation of the microtubule-associated protein, tau. Despite a wealth of experimental and genetic evidence implicating both Aß and tau in the pathogenesis of AD, the precise molecular links between these two pathological hallmarks have remained surprisingly elusive. Here, we review emerging evidence for a critical nexus among Aß, tau, and the lysosomal protease cathepsin D (CatD) that we hypothesize may play a pivotal role in the etiology of AD. CatD degrades both Aß and tau in vitro, but the in vivo relevance of this lysosomal protease to these principally extracellular and cytosolic proteins, respectively, had remained undefined for many decades. Recently, however, our group found that genetic deletion of CatD in mice results in dramatic accumulation of Aß in lysosomes, revealing that Aß is normally trafficked to lysosomes in substantial quantities. Moreover, emerging evidence suggests that tau is also trafficked to the lysosome via chaperone-mediated autophagy and other trafficking pathways. Thus, Aß, tau and CatD are colocalized in the lysosome, an organelle that shows dysfunction early in AD pathogenesis, where they can potentially interact. Notably, we discovered that Aß42-the Aß species most strongly linked to AD pathogenesis-is a highly potent, low-nanomolar, competitive inhibitor of CatD. Taking these observations together, we hypothesize that Aß42 may trigger tauopathy by competitive inhibition of CatD-mediated degradation of tau-pathogenic forms of tau, in particular. Herein, we review the evidence supporting this hypothesis and explore the implications for the molecular pathogenesis of AD. Future research into these novel mechanistic links among Aß, tau and CatD promises to expand our understanding of the etiology of AD and could potentially lead to novel therapeutic approaches for combatting this devastating disease of brain and mind.

9.
Int J Mol Sci ; 22(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668109

ABSTRACT

Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50-80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky's seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors/therapeutic use , Insulin/metabolism , Insulysin/antagonists & inhibitors , Animals , Diabetes Mellitus, Type 2/enzymology , Humans
10.
ChemMedChem ; 16(11): 1775-1787, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33686743

ABSTRACT

Insulin-degrading enzyme (IDE) is a human mononuclear Zn2+ -dependent metalloenzyme that is widely regarded as the primary peptidase responsible for insulin degradation. Despite its name, IDE is also critically involved in the hydrolysis of several other disparate peptide hormones, including glucagon, amylin, and the amyloid ß-protein. As such, the study of IDE inhibition is highly relevant to deciphering the role of IDE in conditions such as type-2 diabetes mellitus and Alzheimer disease. There have been few reported IDE inhibitors, and of these, inhibitors that directly target the active-site Zn2+ ion have yet to be fully explored. In an effort to discover new, zinc-targeting inhibitors of IDE, a library of ∼350 metal-binding pharmacophores was screened against IDE, resulting in the identification of 1-hydroxypyridine-2-thione (1,2-HOPTO) as an effective Zn2+ -binding scaffold. Screening a focused library of HOPTO compounds identified 3-sulfonamide derivatives of 1,2-HOPTO as inhibitors of IDE (Ki values of ∼50 µM). Further structure-activity relationship studies yielded several thiophene-sulfonamide HOPTO derivatives with good, broad-spectrum activity against IDE that have the potential to be useful pharmacological tools for future studies of IDE.


Subject(s)
Enzyme Inhibitors/pharmacology , Insulysin/antagonists & inhibitors , Pyridines/pharmacology , Thiones/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Insulysin/metabolism , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Thiones/chemical synthesis , Thiones/chemistry
11.
Biomedicines ; 9(1)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477364

ABSTRACT

Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic ß-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic ß-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity. In this review, we discuss current knowledge about IDE's function as a regulator of insulin secretion and hepatic insulin sensitivity, both evaluating the classical view of IDE as an insulin protease and also exploring evidence for several non-proteolytic functions. Insulin proteostasis and insulin sensitivity have both been highlighted as targets controlling blood sugar levels in type 2 diabetes, so a clearer understanding the physiological functions of IDE in pancreas and liver could led to the development of novel therapeutics for the treatment of this disease.

12.
Methods Protoc ; 3(4)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255272

ABSTRACT

Amylin is a pancreatic peptide hormone that regulates glucose homeostasis but also aggregates to form islet amyloid in type-2 diabetes. Given its role in both health and disease, there is renewed interest in proteolytic degradation of amylin by insulin-degrading enzyme (IDE) and other proteases. Here, we describe the development and detailed characterization of three novel assays for amylin degradation, two based on a fluoresceinated and biotinylated form of rodent amylin (fluorescein-rodent amylin-biotin, FrAB), which can be used for any amylin protease, and another based on an internally quenched fluorogenic substrate (FRET-based amylin, FRAM), which is more specific for IDE. The FrAB-based substrate can be used in a readily implemented fluorescence-based protocol or in a fluorescence polarization (FP)-based protocol that is more amenable to high-throughput screening (HTS), whereas the FRAM substrate has the advantage of permitting continuous monitoring of proteolytic activity. All three assays yield highly quantitative data and are resistant to DMSO, and the FRAM and FP-based FrAB assay are ideally suited to HTS applications.

13.
Metabolism ; 113: 154352, 2020 12.
Article in English | MEDLINE | ID: mdl-32916153

ABSTRACT

The insulin-degrading enzyme (IDE) is a metalloendopeptidase with a high affinity for insulin. Human genetic polymorphisms in Ide have been linked to increased risk for T2DM. In mice, hepatic Ide ablation causes glucose intolerance and insulin resistance when mice are fed a regular diet. OBJECTIVE: These studies were undertaken to further investigate its regulatory role in glucose homeostasis and insulin sensitivity in diet-induced obesity. METHODS: To this end, we have compared the metabolic effects of loss versus gain of IDE function in mice fed a high-fat diet (HFD). RESULTS: We demonstrate that loss of IDE function in liver (L-IDE-KO mouse) exacerbates hyperinsulinemia and insulin resistance without changes in insulin clearance but in parallel to an increase in pancreatic ß-cell function. Insulin resistance was associated with increased FoxO1 activation and a ~2-fold increase of GLUT2 protein levels in the liver of HFD-fed mice in response to an intraperitoneal injection of insulin. Conversely, gain of IDE function (adenoviral delivery) improves glucose tolerance and insulin sensitivity, in parallel to a reciprocal ~2-fold reduction in hepatic GLUT2 protein levels. Furthermore, in response to insulin, IDE co-immunoprecipitates with the insulin receptor in liver lysates of mice with adenoviral-mediated liver overexpression of IDE. CONCLUSIONS: We conclude that IDE regulates hepatic insulin action and whole-body glucose metabolism in diet-induced obesity via insulin receptor levels.


Subject(s)
Diet, High-Fat , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulysin/metabolism , Liver/enzymology , Animals , Liver/metabolism , Male , Mice , Mice, Obese
14.
Alzheimers Res Ther ; 12(1): 80, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32631408

ABSTRACT

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid ß-protein (Aß) and the microtubule-associated protein, tau, and has been genetically linked to late-onset Alzheimer disease (AD). Here, we sought to examine the consequences of genetic deletion of CatD on Aß proteostasis in vivo and to more completely characterize the degradation of Aß42 and Aß40 by CatD. METHODS: We quantified Aß degradation rates and levels of endogenous Aß42 and Aß40 in the brains of CatD-null (CatD-KO), heterozygous null (CatD-HET), and wild-type (WT) control mice. CatD-KO mice die by ~ 4 weeks of age, so tissues from younger mice, as well as embryonic neuronal cultures, were investigated. Enzymological assays and surface plasmon resonance were employed to quantify the kinetic parameters (KM, kcat) of CatD-mediated degradation of monomeric human Aß42 vs. Aß40, and the degradation of aggregated Aß42 species was also characterized. Competitive inhibition assays were used to interrogate the relative inhibition of full-length human and mouse Aß42 and Aß40, as well as corresponding p3 fragments. RESULTS: Genetic deletion of CatD resulted in 3- to 4-fold increases in insoluble, endogenous cerebral Aß42 and Aß40, exceeding the increases produced by deletion of an insulin-degrading enzyme, neprilysin or both, together with readily detectable intralysosomal deposits of endogenous Aß42-all by 3 weeks of age. Quite significantly, CatD-KO mice exhibited ~ 30% increases in Aß42/40 ratios, comparable to those induced by presenilin mutations. Mechanistically, the perturbed Aß42/40 ratios were attributable to pronounced differences in the kinetics of degradation of Aß42 vis-à-vis Aß40. Specifically, Aß42 shows a low-nanomolar affinity for CatD, along with an exceptionally slow turnover rate that, together, renders Aß42 a highly potent competitive inhibitor of CatD. Notably, the marked differences in the processing of Aß42 vs. Aß40 also extend to p3 fragments ending at positions 42 vs. 40. CONCLUSIONS: Our findings identify CatD as the principal intracellular Aß-degrading protease identified to date, one that regulates Aß42/40 ratios via differential degradation of Aß42 vs. Aß40. The finding that Aß42 is a potent competitive inhibitor of CatD suggests a possible mechanistic link between elevations in Aß42 and downstream pathological sequelae in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/genetics , Animals , Cathepsin D/genetics , Mice , Peptide Fragments
15.
Am J Physiol Endocrinol Metab ; 317(5): E805-E819, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31479304

ABSTRACT

Inhibition of insulin-degrading enzyme (IDE) has been proposed as a possible therapeutic target for type 2 diabetes treatment. However, many aspects of IDE's role in glucose homeostasis need to be clarified. In light of this, new preclinical models are required to elucidate the specific role of this protease in the main tissues related to insulin handling. To address this, here we generated a novel line of mice with selective deletion of the Ide gene within pancreatic beta-cells, B-IDE-KO mice, which have been characterized in terms of multiple metabolic end points, including blood glucose, plasma C-peptide, and intraperitoneal glucose tolerance tests. In addition, glucose-stimulated insulin secretion was quantified in isolated pancreatic islets and beta-cell differentiation markers and insulin secretion machinery were characterized by RT-PCR. Additionally, IDE was genetically and pharmacologically inhibited in INS-1E cells and rodent and human islets, and insulin secretion was assessed. Our results show that, in vivo, life-long deletion of IDE from beta-cells results in increased plasma C-peptide levels. Corroborating these findings, isolated islets from B-IDE-KO mice showed constitutive insulin secretion, a hallmark of beta-cell functional immaturity. Unexpectedly, we found 60% increase in Glut1 (a high-affinity/low-Km glucose transporter), suggesting increased glucose transport into the beta-cell at low glucose levels, which may be related to constitutive insulin secretion. In parallel, IDE inhibition in INS-1E and islet cells resulted in impaired insulin secretion after glucose challenge. We conclude that IDE is required for glucose-stimulated insulin secretion. When IDE is inhibited, insulin secretion machinery is perturbed, causing either inhibition of insulin release at high glucose concentrations or constitutive secretion.


Subject(s)
Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Insulysin/metabolism , Animals , Blood Glucose/metabolism , C-Peptide/blood , Female , Glucose/pharmacology , Glucose Tolerance Test , Glucose Transporter Type 1/metabolism , Homeostasis , Humans , Insulysin/genetics , Male , Mice , Mice, Knockout , RNA, Small Interfering/pharmacology , Rats
16.
Metabolism ; 88: 1-11, 2018 11.
Article in English | MEDLINE | ID: mdl-30098324

ABSTRACT

The role of insulin-degrading enzyme (IDE), a metalloprotease with high affinity for insulin, in insulin clearance remains poorly understood. OBJECTIVE: This study aimed to clarify whether IDE is a major mediator of insulin clearance, and to define its role in the etiology of hepatic insulin resistance. METHODS: We generated mice with liver-specific deletion of Ide (L-IDE-KO) and assessed insulin clearance and action. RESULTS: L-IDE-KO mice exhibited higher (~20%) fasting and non-fasting plasma glucose levels, glucose intolerance and insulin resistance. This phenotype was associated with ~30% lower plasma membrane insulin receptor levels in liver, as well as ~55% reduction in insulin-stimulated phosphorylation of the insulin receptor, and its downstream signaling molecules, AKT1 and AKT2 (reduced by ~40%). In addition, FoxO1 was aberrantly distributed in cellular nuclei, in parallel with up-regulation of the gluconeogenic genes Pck1 and G6pc. Surprisingly, L-IDE-KO mice showed similar plasma insulin levels and hepatic insulin clearance as control mice, despite reduced phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1, which upon its insulin-stimulated phosphorylation, promotes receptor-mediated insulin uptake to be degraded. CONCLUSION: IDE is not a rate-limiting regulator of plasma insulin levels in vivo.


Subject(s)
Glucose Tolerance Test , Insulin Resistance , Insulin/blood , Insulysin/metabolism , Liver/enzymology , Liver/physiopathology , Animals , Gluconeogenesis/genetics , Insulin-Secreting Cells/pathology , Insulysin/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Up-Regulation
17.
SLAS Discov ; 23(10): 1060-1069, 2018 12.
Article in English | MEDLINE | ID: mdl-29995452

ABSTRACT

Glucagon is a vital peptide hormone involved in the regulation of blood sugar under fasting conditions. Although the processes underlying glucagon production and secretion are well understood, far less is known about its degradation, which could conceivably be manipulated pharmacologically for therapeutic benefit. We describe here the development of novel assays for glucagon degradation, based on fluoresceinated and biotinylated glucagon (FBG) labeled at the N- and C-termini, respectively. Proteolysis at any peptide bond within FBG separates the fluorescent label from the biotin tag, which can be quantified in multiple ways. In one method requiring no specialized equipment, intact FBG is separated from the cleaved fluoresceinated fragments using NeutrAvidin agarose beads, and hydrolysis is quantified by fluorescence. In an alternative, high-throughput-compatible method, the degree of hydrolysis is quantified using fluorescence polarization after addition of unmodified avidin. Using a known glucagon protease, we confirm that FBG is cleaved at similar sites as unmodified glucagon and use both methods to quantify the kinetic parameters of FBG degradation. We show further that the fluorescence polarization-based assay performs exceptionally well ( Z'-factor values >0.80) in a high-throughput, mix-and-measure format.


Subject(s)
Biological Assay , Glucagon/metabolism , High-Throughput Screening Assays , Amino Acid Sequence , Biological Assay/methods , Enzyme Assays , Glucagon/chemistry , High-Throughput Screening Assays/methods , Humans , Kinetics , Mass Spectrometry , Proteolysis
18.
PLoS One ; 13(2): e0193101, 2018.
Article in English | MEDLINE | ID: mdl-29447281

ABSTRACT

Insulin-degrading enzyme (IDE) is an atypical zinc-metalloendopeptidase that hydrolyzes insulin and other intermediate-sized peptide hormones, many of which are implicated in skin health and wound healing. Pharmacological inhibitors of IDE administered internally have been shown to slow the breakdown of insulin and thereby potentiate insulin action. Given the importance of insulin and other IDE substrates for a variety of dermatological processes, pharmacological inhibitors of IDE suitable for topical applications would be expected to hold significant therapeutic and cosmetic potential. Existing IDE inhibitors, however, are prohibitively expensive, difficult to synthesize and of undetermined toxicity. Here we used phage display to discover novel peptidic inhibitors of IDE, which were subsequently characterized in vitro and in cell culture assays. Among several peptide sequences tested, a cyclic dodecapeptide dubbed P12-3A was found to potently inhibit the degradation of insulin (Ki = 2.5 ± 0.31 µM) and other substrates by IDE, while also being resistant to degradation, stable in biological milieu, and highly selective for IDE. In cell culture, P12-3A was shown to potentiate several insulin-induced processes, including the transcription, translation and secretion of alpha-1 type I collagen in primary murine skin fibroblasts, and the migration of keratinocytes in a scratch wound migration assay. By virtue of its potency, stability, specificity for IDE, low cost of synthesis, and demonstrated ability to potentiate insulin-induced processes involved in wound healing and skin health, P12-3A holds significant therapeutic and cosmetic potential for topical applications.


Subject(s)
Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Insulysin/antagonists & inhibitors , Peptides/pharmacology , Animals , Cell Surface Display Techniques , Cells, Cultured , Fibroblasts/enzymology , Mice
19.
Endocrinology ; 157(9): 3462-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27404391

ABSTRACT

Islet amyloid deposition in human type 2 diabetes results in ß-cell loss. These amyloid deposits contain the unique amyloidogenic peptide human islet amyloid polypeptide (hIAPP), which is also a known substrate of the protease insulin-degrading enzyme (IDE). Whereas IDE inhibition has recently been demonstrated to improve glucose metabolism in mice, inhibiting it has also been shown to increase cell death when synthetic hIAPP is applied exogenously to a ß-cell line. Thus, we wanted to determine whether a similar deleterious effect is observed when hIAPP is endogenously produced and secreted from islets. To address this issue, we cultured hIAPP transgenic mouse islets that have the propensity to form amyloid for 48 and 144 hours in 16.7 mM glucose in the presence and absence of the IDE inhibitor 1. At neither time interval did IDE inhibition increase amyloid formation or ß-cell loss. Thus, the inhibition of IDE may represent an approach to improve glucose metabolism in human type 2 diabetes, without inducing amyloid deposition and its deleterious effects.


Subject(s)
Amyloid/metabolism , Insulysin/antagonists & inhibitors , Islet Amyloid Polypeptide/metabolism , Islets of Langerhans/metabolism , Animals , Apoptosis , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin/metabolism , Insulysin/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic
20.
CNS Drugs ; 30(8): 667-75, 2016 08.
Article in English | MEDLINE | ID: mdl-27349988

ABSTRACT

The amyloid ß-protein (Aß) plays an indispensable role in the pathogenesis of Alzheimer disease (AD). Aß is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aß-degrading proteases (AßDPs). A growing number of AßDPs have been identified that impact Aß powerfully and in a surprising variety of ways. As such, AßDPs hold considerable therapeutic potential for the treatment and/or prevention of AD. Here, we critically review the relative merits of therapeutic strategies targeting AßDPs compared with current Aß-lowering strategies focused on immunotherapies and pharmacological modulation of Aß-producing enzymes. Several innovative advances have increased considerably the feasibility of delivering AßDPs to the brain or enhancing their activity in a non-invasive manner. We argue that therapies targeting AßDPs offer numerous potential advantages that should be explored through continued research into this promising field.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Peptide Hydrolases/metabolism , Animals , Brain/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...