Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Comput Graph Appl ; 42(2): 56-67, 2022.
Article in English | MEDLINE | ID: mdl-35239477

ABSTRACT

Technical textiles, in particular, nonwovens used, for example, in medical masks, have become increasingly important in our daily lives. The quality of these textiles depends on the manufacturing process parameters that cannot be easily optimized in live settings. In this article, we present a visual analytics framework that enables interactive parameter space exploration and parameter optimization in industrial production processes of nonwovens. Therefore, we survey analysis strategies used in optimizing industrial production processes of nonwovens and support them in our tool. To enable real-time interaction, we augment the digital twin with a machine learning surrogate model for rapid quality computations. In addition, we integrate mechanisms for sensitivity analysis that ensure consistent product quality under mild parameter changes. In our case study, we explore the finding of optimal parameter sets, investigate the input-output relationship between parameters, and conduct a sensitivity analysis to find settings that result in robust quality.


Subject(s)
Machine Learning , Textiles
2.
IEEE Trans Vis Comput Graph ; 28(1): 540-550, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34587086

ABSTRACT

Embeddings of high-dimensional data are widely used to explore data, to verify analysis results, and to communicate information. Their explanation, in particular with respect to the input attributes, is often difficult. With linear projects like PCA the axes can still be annotated meaningfully. With non-linear projections this is no longer possible and alternative strategies such as attribute-based color coding are required. In this paper, we review existing augmentation techniques and discuss their limitations. We present the Non-Linear Embeddings Surveyor (NoLiES) that combines a novel augmentation strategy for projected data (rangesets) with interactive analysis in a small multiples setting. Rangesets use a set-based visualization approach for binned attribute values that enable the user to quickly observe structure and detect outliers. We detail the link between algebraic topology and rangesets and demonstrate the utility of NoLiES in case studies with various challenges (complex attribute value distribution, many attributes, many data points) and a real-world application to understand latent features of matrix completion in thermodynamics.

3.
IEEE Trans Vis Comput Graph ; 28(1): 1117-1127, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34591761

ABSTRACT

We present Knowledge Rocks, an implementation strategy and guideline for augmenting visualization systems to knowledge-assisted visualization systems, as defined by the KAVA model. Visualization systems become more and more sophisticated. Hence, it is increasingly important to support users with an integrated knowledge base in making constructive choices and drawing the right conclusions. We support the effective reactivation of visualization software resources by augmenting them with knowledge-assistance. To provide a general and yet supportive implementation strategy, we propose an implementation process that bases on an application-agnostic architecture. This architecture is derived from existing knowledge-assisted visualization systems and the KAVA model. Its centerpiece is an ontology that is able to automatically analyze and classify input data, linked to a database to store classified instances. We discuss design decisions and advantages of the KR framework and illustrate its broad area of application in diverse integration possibilities of this architecture into an existing visualization system. In addition, we provide a detailed case study by augmenting an it-security system with knowledge-assistance facilities.

4.
IEEE Trans Vis Comput Graph ; 26(4): 1638-1649, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31995496

ABSTRACT

Operation technology networks, i.e. hard- and software used for monitoring and controlling physical/industrial processes, have been considered immune to cyber attacks for a long time. A recent increase of attacks in these networks proves this assumption wrong. Several technical constraints lead to approaches to detect attacks on industrial processes using available sensor data. This setting differs fundamentally from anomaly detection in IT-network traffic and requires new visualization approaches adapted to the common periodical behavior in OT-network data. We present a tailored visualization system that utilizes inherent features of measurements from industrial processes to full capacity to provide insight into the data and support triage analysis by laymen and experts. The novel combination of spiral plots with results from anomaly detection was implemented in an interactive system. The capabilities of our system are demonstrated using sensor and actuator data from a real-world water treatment process with introduced attacks. Exemplary analysis strategies are presented. Finally, we evaluate effectiveness and usability of our system and perform an expert evaluation.

5.
IEEE Trans Vis Comput Graph ; 26(1): 249-258, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31581084

ABSTRACT

This work describes an approach for the interactive visual analysis of large-scale simulations, where numerous superlevel set components and their evolution are of primary interest. The approach first derives, at simulation runtime, a specialized Cinema database that consists of images of component groups, and topological abstractions. This database is processed by a novel graph operation-based nested tracking graph algorithm (GO-NTG) that dynamically computes NTGs for component groups based on size, overlap, persistence, and level thresholds. The resulting NTGs are in turn used in a feature-centered visual analytics framework to query specific database elements and update feature parameters, facilitating flexible post hoc analysis.

6.
IEEE Trans Vis Comput Graph ; 25(3): 1499-1512, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29994584

ABSTRACT

Ensemble simulations are used in climate research to account for natural variability. For medium-term decadal predictions, each simulation run is initialized with real observations from a different day resulting in a set of possible climatic futures. Understanding the variability and the predictive power in this wealth of data is still a challenging task. In this paper, we introduce a visual analytics system to explore variability within ensembles of decadal climate predictions. We propose a new interactive visualization technique (clustering timeline) based on the Sankey diagram, which conveys a concise summary of data similarity and its changes over time. We augment the system with two additional visualizations, filled contour maps and heatmaps, to provide analysts with additional information relating the new diagram to raw data and automatic clustering results. The usefulness of the technique is demonstrated by case studies and user interviews.

7.
IEEE Trans Vis Comput Graph ; 24(1): 822-831, 2018 01.
Article in English | MEDLINE | ID: mdl-28866539

ABSTRACT

Complex networks require effective tools and visualizations for their analysis and comparison. Clique communities have been recognized as a powerful concept for describing cohesive structures in networks. We propose an approach that extends the computation of clique communities by considering persistent homology, a topological paradigm originally introduced to characterize and compare the global structure of shapes. Our persistence-based algorithm is able to detect clique communities and to keep track of their evolution according to different edge weight thresholds. We use this information to define comparison metrics and a new centrality measure, both reflecting the relevance of the clique communities inherent to the network. Moreover, we propose an interactive visualization tool based on nested graphs that is capable of compactly representing the evolving relationships between communities for different thresholds and clique degrees. We demonstrate the effectiveness of our approach on various network types.

8.
Curr Biol ; 26(4): 439-49, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26832441

ABSTRACT

Plants form new organs with patterned tissue organization throughout their lifespan. It is unknown whether this robust post-embryonic organ formation results from stereotypic dynamic processes, in which the arrangement of cells follows rigid rules. Here, we combine modeling with empirical observations of whole-organ development to identify the principles governing lateral root formation in Arabidopsis. Lateral roots derive from a small pool of founder cells in which some take a dominant role as seen by lineage tracing. The first division of the founders is asymmetric, tightly regulated, and determines the formation of a layered structure. Whereas the pattern of subsequent cell divisions is not stereotypic between different samples, it is characterized by a regular switch in division plane orientation. This switch is also necessary for the appearance of patterned layers as a result of the apical growth of the primordium. Our data suggest that lateral root morphogenesis is based on a limited set of rules. They determine cell growth and division orientation. The organ-level coupling of the cell behavior ensures the emergence of the lateral root's characteristic features. We propose that self-organizing, non-deterministic modes of development account for the robustness of plant organ morphogenesis.


Subject(s)
Arabidopsis/growth & development , Cell Division , Plant Roots/growth & development
9.
IEEE Trans Vis Comput Graph ; 22(1): 995-1004, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529743

ABSTRACT

Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.


Subject(s)
Cell Movement/physiology , Computer Graphics , Imaging, Three-Dimensional/methods , Microscopy/methods , Algorithms , Animals , Drosophila/embryology , Embryo, Nonmammalian
SELECTION OF CITATIONS
SEARCH DETAIL
...