Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 63(8): 4155-4170, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32202782

ABSTRACT

Pan-genotype NS5A inhibitors underpin hugely successful hepatitis C virus (HCV) therapy. The discovery of GSK2818713 (13), a nonstructural protein 5A (NS5A) HCV inhibitor characterized by a significantly improved genotype coverage relative to first-generation NS5A inhibitor daclatasvir (DCV), is detailed herein. The SAR analysis revealed cooperative potency effects of the biphenylene, bicyclic pyrrolidine (Aoc), and methyl-threonine structural motifs. Relative to DCV, 13 improved activity against genotype 1a (gt1a) and gt1b NS5A variants as well as HCV chimeric replicons containing NS5A fragments from genotypes 2-6. Long-term treatment of subgenomic replicons with 13 potently and durably decreased HCV RNA levels for gt1a, gt2a, and gt3a. These properties, suitable pharmacokinetics, and the lack of cross-resistance resulted in the selection of 13 as a preclinical candidate.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Genotype , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/metabolism , Dogs , Humans , Mice , Rats , Rats, Wistar , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology
2.
J Med Chem ; 57(5): 2091-106, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23944386

ABSTRACT

Hepatitis C virus (HCV) assembles many host cellular proteins into unique membranous replication structures as a prerequisite for viral replication, and PI4KIIIα is an essential component of these replication organelles. RNA interference of PI4KIIIα results in a breakdown of this replication complex and cessation of HCV replication in Huh-7 cells. PI4KIIIα is a lipid kinase that interacts with the HCV nonstructural 5A protein (NS5A) and enriches the HCV replication complex with its product, phosphoinositol 4-phosphate (PI4P). Elevated levels of PI4P at the endoplasmic reticulum have been linked to HCV infection in the liver of HCV infected patients. We investigated if small molecule inhibitors of PI4KIIIα could inhibit HCV replication in vitro. The synthesis and structure-activity relationships associated with the biological inhibition of PI4KIIIα and HCV replication are described. These efforts led directly to identification of quinazolinone 28 that displays high selectivity for PI4KIIIα and potently inhibits HCV replication in vitro.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Animals , Antiviral Agents/chemistry , Drug Discovery , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Hepacivirus/physiology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Rats , Structure-Activity Relationship , Virus Replication/drug effects
3.
J Med Chem ; 57(5): 1902-13, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23672667

ABSTRACT

A boronic acid moiety was found to be a critical pharmacophore for enhanced in vitro potency against wild-type hepatitis C replicons and known clinical polymorphic and resistant HCV mutant replicons. The synthesis, optimization, and structure-activity relationships associated with inhibition of HCV replication in a subgenomic replication system for a series of non-nucleoside boron-containing HCV RNA-dependent RNA polymerase (NS5B) inhibitors are described. A summary of the discovery of 3 (GSK5852), a molecule which entered clinical trials in subjects infected with HCV in 2011, is included.


Subject(s)
Antiviral Agents/pharmacology , Boronic Acids/chemistry , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/chemistry , Drug Discovery , Drug Resistance, Viral/genetics , Hepacivirus/enzymology , Hepacivirus/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors
4.
J Org Chem ; 78(23): 11680-90, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24171666

ABSTRACT

A robust convergent synthesis of the prodrugs of HCV replicase inhibitors 1-5 is described. The central 5H-imidazo[4,5-d]pyridazine core was formed from acid-catalyzed cyclocondensation of an imidazole-4,5-dicarbaldehyde (20) and a α-hydrazino ester, generated in situ from the bis-BOC-protected precursors 25 and 33. The acidic conditions not only released the otherwise unstable α-hydrazino esters but also were the key to avoid facile decarboxylation to the parent drugs from the carboxylic ester prodrugs 1-5. The bis-BOC α-hydrazino esters 25 and 33 were prepared by addition of ester enolates (from 23 and 32) to di-tert-butyl azodicarboxylate via catalysis with mild inorganic bases, such as Li2CO3. A selective aerobic oxidation with catalytic 5% Pt-Bi/C in aqueous KOH was developed to provide the dicarbaldehyde 20 from the diol 27.


Subject(s)
Aldehydes/pharmacology , Antiviral Agents/pharmacology , Esters/chemistry , Hepacivirus/drug effects , Imidazoles/pharmacology , Prodrugs/pharmacology , Virus Replication/drug effects , Aldehydes/chemical synthesis , Aldehydes/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Bismuth/chemistry , Carbon/chemistry , Catalysis , Dose-Response Relationship, Drug , Hydroxides/chemistry , Imidazoles/chemical synthesis , Imidazoles/chemistry , Lithium Carbonate/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxidation-Reduction , Platinum/chemistry , Potassium Compounds/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...