Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256931

ABSTRACT

Timolol (TIM) is a non-selective ß-adrenergic receptor antagonist used orally for the treatment of hypertension and heart attacks, and topically for treating glaucoma; lately, it has also been used in some specific dermatological problems. In the present study, its photodegradation and potential risk of phototoxicity were examined using chemical, in silico and in vitro methods. The UV/VIS irradiated solutions of TIM at pH 1-13 were subjected to LC-UV and UPLC-HRMS/MS analyses showing pseudo first-order kinetics of degradation and several degradation products. The structures of these photodegradants were elucidated by fragmentation path analysis based on high resolution (HR) fragmentation mass spectra, and then used for toxicity evaluation using OSIRIS Property Explorer and Toxtree. Potential risk of phototoxicity was also studied using chemical tests for detecting ROS under UV/VIS irradiation and in vitro tests on BALB/c 3T3 mouse fibroblasts (MTT, NRU and Live/Dead tests). TIM was shown to be potentially phototoxic because of its UV/VIS absorptive properties and generation ROS during irradiation. As was observed in the MTT and NRU tests, the co-treatment of fibroblasts with TIM and UV/VIS light inhibited cell viability, especially when concentrations of the drug were higher than 50 µg/mL.

2.
Molecules ; 27(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500415

ABSTRACT

The chemical stability of diphenhydramine (DIPH), azelastine (AZE) and bepotastine (BEPO) was examined in solutions and solids. The drugs were subjected to high temperature (70 °C for 35 h) or UV/VIS light (18.902−94.510 kJ/m2) at pH 1−13, to examine their percentage degradation and kinetics of degradation. Further, the stability of solid DIPH, AZE and BEPO was examined in the presence of excipients of different reactivity, i.e., citric acid (CA) and polyvinyl alcohol (PVA) under high temperature/high humidity (70 °C/80% RH) or UV/VIS light (94.510 kJ/m2). Under high temperature, DIPH degraded visibly (>19%) at pH 1 and 4, AZE was shown stable, while the degradation of BEPO was rather high (>17%) in all pH conditions. Under UV/VIS irradiation all the drugs were shown labile with degradation in the range 5.5−96.3%. As far as the solid mixtures were concerned, all drugs interacted with excipients, especially under high temperature/high humidity or UV/VIS light. As a result, DIPH, AZE and BEPO were compared in terms of their stability, with regard to their different structures and acid/base properties. All these results may be helpful for manufacturing, storing and applying these drugs in their topical (skin, nasal and ocular), oral and injectable formulations.


Subject(s)
Excipients , Polyvinyl Alcohol , Excipients/chemistry , Drug Stability , Diphenhydramine , Citric Acid , Histamine Antagonists
3.
Pharmaceutics ; 12(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560381

ABSTRACT

In this study, important H1 antihistaminic drugs, i.e., emedastine (EME), epinastine (EPI), and ketotifen (KET), were irradiated with UV/Vis light (300-800 nm) in solutions of different pH values. Next, they were analyzed by new high performance liquid chromatography (HPLC) methods, in order to estimate the percentage of degradation and respective kinetics. Subsequently, ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) was used to identify their photodegradation products and to propose degradation pathways. In addition, the peroxidation of linoleic acid and generation of singlet oxygen (SO) and superoxide anion (SA) were examined, together with the molar extinction coefficient (MEC) evaluation, to estimate their phototoxic risk. The photodegradation of all EME, EPI, and KET followed pseudo first-order kinetics. At pH values of 7.0 and 10.0, EPI was shown to be rather stable. However, its photostability was lower at pH 3.0. EME was shown to be photolabile in the whole range of pH values. In turn, KET was shown to be moderately labile at pH 3.0 and 7.0. However, it degraded completely in the buffer of pH 10.0. As a result, several photodegradation products were separated and identified using the UPLC-MS/MS method. Finally, our ROS assays showed a potent phototoxic risk in the following drug order: EPI < EME < KET. All of these results may be helpful for manufacturing, storing, and applying these substantial drugs, especially in their ocular formulations.

4.
J Anal Methods Chem ; 2019: 5790404, 2019.
Article in English | MEDLINE | ID: mdl-31061743

ABSTRACT

A comparative study of chemical stability of terfenadine (TER) and its in vivo metabolite fexofenadine (FEX) was performed. Both TER and FEX were subjected to high temperature at different pH and UV/VIS light at different pH and then quantitatively analyzed using new validated LC-UV methods. These methods were used to monitor the degradation processes and to determine the kinetics of degradation for both the compounds. As far as the effects of temperature and pH were concerned, FEX occurred more sensitive to degradation than TER. As far as the effects of UV/VIS light and pH were concerned, the both drugs were similarly sensitive to high doses of light. Using all stress conditions, the processes of degradation of TER and FEX followed the first-order kinetics. The results obtained for these two antihistaminic drugs could be helpful in developing their new derivatives with higher activity and stability at the same time.

SELECTION OF CITATIONS
SEARCH DETAIL
...