Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(4): e3002057, 2023 04.
Article in English | MEDLINE | ID: mdl-37043428

ABSTRACT

In humans, mutations in D-2-hydroxyglutarate (D-2HG) dehydrogenase (D2HGDH) result in D-2HG accumulation, delayed development, seizures, and ataxia. While the mechanisms of 2HG-associated diseases have been studied extensively, the endogenous metabolism of D-2HG remains unclear in any organism. Here, we find that, in Caenorhabditis elegans, D-2HG is produced in the propionate shunt, which is transcriptionally activated when flux through the canonical, vitamin B12-dependent propionate breakdown pathway is perturbed. Loss of the D2HGDH ortholog, dhgd-1, results in embryonic lethality, mitochondrial defects, and the up-regulation of ketone body metabolism genes. Viability can be rescued by RNAi of hphd-1, which encodes the enzyme that produces D-2HG or by supplementing either vitamin B12 or the ketone bodies 3-hydroxybutyrate (3HB) and acetoacetate (AA). Altogether, our findings support a model in which C. elegans relies on ketone bodies for energy when vitamin B12 levels are low and in which a loss of dhgd-1 causes lethality by limiting ketone body production.


Subject(s)
Caenorhabditis elegans , Propionates , Humans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Propionates/metabolism , Vitamin B 12 , Ketones
SELECTION OF CITATIONS
SEARCH DETAIL