Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stress Chaperones ; 23(5): 985-1002, 2018 09.
Article in English | MEDLINE | ID: mdl-29754332

ABSTRACT

In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H2O2), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H2O2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Oxidative Stress , Animals , Cattle , Cell Death , Cells, Cultured , Correlation of Data , Glutathione , HSP70 Heat-Shock Proteins/genetics , Heat Shock Transcription Factors/metabolism , Male , NAD/metabolism , NADP/metabolism , Oxidation-Reduction , Protein Carbonylation , Reactive Oxygen Species/metabolism , Ubiquitination , Vitamin K 3/pharmacology
2.
Reprod Fertil Dev ; 29(9): 1868-1881, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27851888

ABSTRACT

In in vitro-produced (IVP) bovine embryos, a burst in transcriptional activation of the embryonic genome (EGA) occurs at the 8-16-cell stage. To examine transcriptional regulation prior to EGA, notably in response to heat stress, we asked (1) whether the spontaneous expression of a luciferase transgene that is driven by the minimal mouse heat-shock protein 1b (hspa1b) gene promoter paralleled that of HSPA1A during EGA in IVP bovine embryo and (2) whether expression of the endogenous heat-inducible iHSPA group member HSPA1A gene and the hspa1b/luciferase transgene were induced by heat stress (HS) prior to EGA. Using two culture systems, we showed that luciferase activity levels rose during the 40-h long EGA-associated cell cycle. In contrast, iHSPA proteins were abundant in matured oocytes and in blastomeres from the two-cell to the 16-cell stages. However, normalised results detected a rise in the level of HSPA1A and luciferase mRNA during EGA, when transcription was required for their protein expression. Prior to EGA, HS-induced premature luciferase activity and transgene expression were clearly inhibited. We could not, however, establish whether this was also true for HSPA1A expression because of the decay of the abundant maternal transcripts prior to EGA. In bovine embryos, heat-induced expression of hspa1b/luciferase, and most likely of HSPA1A, was therefore strictly dependent on EGA. The level of the heat-shock transcription factor 1 molecules that were found in cell nuclei during embryonic development correlated better with the embryo's capacity for heat-shock response than with EGA-associated gene expression.


Subject(s)
Blastocyst/metabolism , Gene Expression Regulation, Developmental , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Animals , Cattle , Embryo Culture Techniques/veterinary , Female , HSP70 Heat-Shock Proteins/metabolism , Hot Temperature , Pregnancy
3.
J Reprod Dev ; 56(4): 379-88, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20431250

ABSTRACT

Histone H3 trimethylation on lysine 27 is one of the histone modifications associated with chromatin of silenced regions. H3K27me3 labeling is initially asymmetrical between pronuclei in mammalian embryos, and then it is remodeled during early development. However, in mouse embryos obtained after somatic cell nuclear transfer (SCNT), H3K27me3 histones inherited from the somatic female cell and associated with X chromosome inactivation have been reported to escape remodeling. Using immunostaining, we investigated the remodeling of H3K27me3 in Bos taurus embryos obtained after in vitro fertilization (IVF) and SCNT. In this species, transfer-induced chromatin remodeling can be clearly separated from embryonic genome activation (EGA), which occurs at the 8-16-cell stage, and cloning by SCNT is 10 times more successful than in the mouse. In early IVF bovine embryos, dense H3K27me3 labeling was localized in the pericentric heterochromatin as recently described in the mouse. Labeling was however unevenly distributed up to the 8-cell stage, suggesting that the parental genomes partitioned before EGA. In female IVF blastocysts, a somatic-like female profile appeared in 21% of the trophoblast cells. This profile, which had one major nuclear H3K27me3 patch, the putative inactive X chromosome (Xi), was absent in male blastocysts. In contrast, the somatic-like female H3K27me3 profile was observed in the majority of the nuclei of female bovine SCNT embryos before EGA. At the 8-16-cell stage, this profile was transiently replaced by pericentric-like labeling in most nuclei. Immunostaining of mitotic chromosomes suggested that the ratio of H3K27me3 labeling in pericentric heterochromatin vs. euchromatin was then rapidly altered. Finally, Xi-like H3K27me3 staining appeared again in trophoblast cells in female SCNT blastocysts. These results suggest a role for EGA in H3K27me3 remodeling, which affects the heterochromatin inherited from the donor cell or produced during development.


Subject(s)
Cattle/embryology , Cell Nucleus/metabolism , Fertilization in Vitro , Histones/metabolism , Nuclear Transfer Techniques , Animals , Cattle/metabolism , Cells, Cultured , Chromatin Assembly and Disassembly/physiology , Embryo, Mammalian , Embryonic Development/physiology , Female , Fertilization in Vitro/methods , Heterochromatin/metabolism , Histones/chemistry , Hybrid Cells/metabolism , Hybrid Cells/physiology , Lysine/metabolism , Male , Metabolome , Methylation , Mice , Pregnancy
4.
BMC Res Notes ; 3: 17, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20180997

ABSTRACT

BACKGROUND: Expression of several copies of the heat-inducible Hsp70.1Luciferase (LUC) transgene inserted at a single X chromosome locus of a bull (Bos taurus) was assessed in females after X-chromosome inactivation (XCI). Furthermore, impact of the chromosomal environment on the spontaneous expression of these transgene copies before XCI was studied during early development in embryos obtained after in vitro fertilization (IVF), when the locus was carried by the X chromosome inherited from the bull, and after somatic cell nuclear transfer (SCNT) cloning, when the locus could be carried by the inactive Xi or the active Xa chromosome in a female donor cell, or by the (active) X in a male donor cell. FINDINGS: Transgene copies were mapped to bovine Xp22. In XXLUC female fibroblasts, i.e. after random XCI, the proportions of late-replicating inactive and early-replicating active XLUC chromosomes were not biased and the proportion of cells displaying an increase in the level of immunostained luciferase protein after heat-shock induction was similar to that in male fibroblasts. Spontaneous transgene expression occurred at the 8-16-cell stage both in transgenic (female) embryos obtained after IVF and in male and female embryos obtained after SCNT. CONCLUSIONS: The XLUC chromosome is normally inactivated but at least part of the inactivated X-linked Hsp70.1Luciferase transgene copies remains heat-inducible after random XCI in somatic cells. Before XCI, the profile of the transgenes' spontaneous expression is independent of the epigenetic origin of the XLUC chromosome since it is similar in IVF female, SCNT male and SCNT female embryos.

5.
Plant Physiol ; 129(1): 300-9, 2002 May.
Article in English | MEDLINE | ID: mdl-12011360

ABSTRACT

Fruit ripening and abscission are associated with an ethylene burst in several melon (Cucumis melo) genotypes. In cantaloupe as in other climacteric fruit, exogenous ethylene can prematurely induce abscission, ethylene production, and ripening. Melon genotypes without fruit abscission or without ethylene burst also exist and are, therefore, non-climacteric. In the nonabscising melon fruit PI 161375, exogenous ethylene failed to stimulate abscission, loss of firmness, ethylene production, and expression of all target genes tested. However, the PI 161375 etiolated seedlings displayed the usual ethylene-induced triple response. Genetic analysis on a population of recombinant cantaloupe Charentais x PI 161375 inbred lines in segregation for fruit abscission and ethylene production indicated that both characters are controlled by two independent loci, abscission layer (Al)-3 and Al-4. The non-climacteric phenotype in fruit tissues is attributable to ethylene insensitivity conferred by the recessive allelic forms from PI 161375. Five candidate genes (two ACO, two ACS, and ERS) that were localized on the melon genetic map did not exhibit colocalization with Al-3 or Al-4.


Subject(s)
Cucumis melo/genetics , Ethylenes/metabolism , Fruit/genetics , Saccharomyces cerevisiae Proteins , Alkenes/metabolism , Alkenes/pharmacology , Amino Acid Oxidoreductases/metabolism , Amino Acids, Cyclic/metabolism , Chromosome Mapping , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Crosses, Genetic , Cucumis melo/drug effects , Cucumis melo/metabolism , Ethylenes/pharmacology , Fruit/drug effects , Fruit/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Lyases/metabolism , Membrane Proteins/genetics , Molecular Sequence Data , Oxygen Consumption/physiology , Phenotype , Plant Proteins/genetics , Plant Shoots/drug effects , Quantitative Trait, Heritable , Receptors, Cell Surface/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...