Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 8(1): 1052, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29051493

ABSTRACT

De novo mutations in specific mTOR pathway genes cause brain overgrowth in the context of intellectual disability (ID). By analyzing 101 mMTOR-related genes in a large ID patient cohort and two independent population cohorts, we show that these genes modulate brain growth in health and disease. We report the mTOR activator gene RHEB as an ID gene that is associated with megalencephaly when mutated. Functional testing of mutant RHEB in vertebrate animal models indicates pathway hyperactivation with a concomitant increase in cell and head size, aberrant neuronal migration, and induction of seizures, concordant with the human phenotype. This study reveals that tight control of brain volume is exerted through a large community of mTOR-related genes. Human brain volume can be altered, by either rare disruptive events causing hyperactivation of the pathway, or through the collective effects of common alleles.


Subject(s)
Brain/anatomy & histology , Intellectual Disability/genetics , Megalencephaly/genetics , Mutation , Ras Homolog Enriched in Brain Protein/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Movement , Cell Size , Cells, Cultured , Humans , Intellectual Disability/pathology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Organ Size , Seizures/genetics , Signal Transduction/genetics , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...