Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 50(11): 1574-1583, 2018 11.
Article in English | MEDLINE | ID: mdl-30275530

ABSTRACT

We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development.


Subject(s)
Chromosome Mapping , Genetic Loci , Genome , Haplotypes , Mice, Inbred Strains/genetics , Animals , Animals, Laboratory , Chromosome Mapping/veterinary , Haplotypes/genetics , Mice , Mice, Inbred BALB C/genetics , Mice, Inbred C3H/genetics , Mice, Inbred C57BL/genetics , Mice, Inbred CBA/genetics , Mice, Inbred DBA/genetics , Mice, Inbred NOD/genetics , Mice, Inbred Strains/classification , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide , Species Specificity
2.
Nat Genet ; 47(11): 1363-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26437029

ABSTRACT

Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes.


Subject(s)
Developmental Disabilities/genetics , Genes, Recessive , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Cell Cycle Proteins/genetics , Developmental Disabilities/classification , Exome/genetics , Family Health , Female , Genetic Variation , Genotype , Humans , Male , Matrix Metalloproteinases, Secreted/genetics , Pedigree , Phenotype , Protein-Arginine N-Methyltransferases/genetics , Sequence Analysis, DNA/methods , Ubiquitin-Protein Ligases/genetics , United Kingdom
3.
Diabetes ; 61(12): 3139-47, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22923471

ABSTRACT

In this study, we define a new role for lipocalin prostaglandin D synthase (L-PGDS) in the control of metabolic fuel utilization by brown adipose tissue (BAT). We demonstrate that L-PGDS expression in BAT is positively correlated with BAT activity, upregulated by peroxisome proliferator-activated receptor γ coactivator 1α or 1ß and repressed by receptor-interacting protein 140. Under cold-acclimated conditions, mice lacking L-PGDS had elevated reliance on carbohydrate to provide fuel for thermogenesis and had increased expression of genes regulating glycolysis and de novo lipogenesis in BAT. These transcriptional differences were associated with increased lipid content in BAT and a BAT lipid composition enriched with de novo synthesized lipids. Consistent with the concept that lack of L-PGDS increases glucose utilization, mice lacking L-PGDS had improved glucose tolerance after high-fat feeding. The improved glucose tolerance appeared to be independent of changes in insulin sensitivity, as insulin levels during the glucose tolerance test and insulin, leptin, and adiponectin levels were unchanged. Moreover, L-PGDS knockout mice exhibited increased expression of genes involved in thermogenesis and increased norepinephrine-stimulated glucose uptake to BAT, suggesting that sympathetically mediated changes in glucose uptake may have improved glucose tolerance. Taken together, these results suggest that L-PGDS plays an important role in the regulation of glucose utilization in vivo.


Subject(s)
Adipose Tissue, Brown/metabolism , Intramolecular Oxidoreductases/metabolism , Lipocalins/metabolism , Animals , Body Composition/genetics , Body Composition/physiology , Cell Line , Female , Intramolecular Oxidoreductases/genetics , Lipocalins/genetics , Male , Mice , Real-Time Polymerase Chain Reaction , Thermogenesis/genetics , Thermogenesis/physiology , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL