Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Diagn ; 22(5): 629-639, 2020 05.
Article in English | MEDLINE | ID: mdl-32142900

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) results from deregulation of a number of genes via multiple genomic mechanisms. We designed a comprehensive fluorescence in situ hybridization (CI-FISH) assay that consists of genomic probes to simultaneously investigate oncogenes and oncosuppressors recurrently involved in chromosome rearrangements in T-ALL, which was applied to 338 T-ALL cases. CI-FISH provided genetic classification into one of the well-defined genetic subgroups (ie, TAL/LMO, HOXA, TLX3, TLX1, NKX2-1/2-2, or MEF2C) in 80% of cases. Two patients with translocations of the LMO3 transcription factor were identified, suggesting that LMO3 activation may serve as an alternative to LMO1/LMO2 activation in the pathogenesis of this disease. Moreover, intrachromosomal rearrangements that involved the 10q24 locus were found as a new mechanism of TLX1 activation. An unequal distribution of cooperating genetic defects was found among the six genetic subgroups. Interestingly, deletions that targeted TCF7 or TP53 were exclusively found in HOXA T-ALL, LEF1 defects were prevalent in NKX2-1 rearranged patients, CASP8AP2 and PTEN alterations were significantly enriched in TAL/LMO leukemias, and PTPN2 and NUP214-ABL1 abnormalities occurred in TLX1/TLX3. This work convincingly shows that CI-FISH is a powerful tool to define genetic heterogeneity of T-ALL, which may be applied as a rapid and accurate diagnostic test.


Subject(s)
Biomarkers, Tumor , In Situ Hybridization, Fluorescence/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Clonal Evolution/genetics , Female , Gene Rearrangement , Genetic Heterogeneity , Genetic Testing , Genome-Wide Association Study , Humans , In Situ Hybridization, Fluorescence/standards , Male , Middle Aged , Translocation, Genetic , Young Adult
2.
Blood ; 124(24): 3577-82, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25270907

ABSTRACT

MYC translocations represent a genetic subtype of T-lineage acute lymphoblastic leukemia (T-ALL), which occurs at an incidence of ∼6%, assessed within a cohort of 196 T-ALL patients (64 adults and 132 children). The translocations were of 2 types; those rearranged with the T-cell receptor loci and those with other partners. MYC translocations were significantly associated with the TAL/LMO subtype of T-ALL (P = .018) and trisomies 6 (P < .001) and 7 (P < .001). Within the TAL/LMO subtype, gene expression profiling identified 148 differentially expressed genes between patients with and without MYC translocations; specifically, 77 were upregulated and 71 downregulated in those with MYC translocations. The poor prognostic marker, CD44, was among the upregulated genes. MYC translocations occurred as secondary abnormalities, present in subclones in one-half of the cases. Longitudinal studies indicated an association with induction failure and relapse.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Translocation, Genetic , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 6/genetics , Chromosomes, Human, Pair 6/metabolism , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, Pair 7/metabolism , Disease-Free Survival , Female , Gene Expression Profiling , Humans , Hyaluronan Receptors/biosynthesis , Hyaluronan Receptors/genetics , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Survival Rate , Trisomy/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...