Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Biomed Opt ; 27(7)2021 11.
Article in English | MEDLINE | ID: mdl-34796707

ABSTRACT

SIGNIFICANCE: The polymer, polydimethylsiloxane (PDMS), has been increasingly used to make tissue simulating phantoms due to its excellent processability, durability, flexibility, and limited tunability of optical, mechanical, and thermal properties. We report on a robust technique to fabricate PDMS-based tissue-mimicking phantoms where the broad range of scattering and absorption properties are independently adjustable in the visible- to near-infrared wavelength range from 500 to 850 nm. We also report on an analysis method to concisely quantify the phantoms' broadband characteristics with four parameters. AIM: We report on techniques to manufacture and characterize solid tissue-mimicking phantoms of PDMS polymers. Tunability of the absorption (µa ( λ ) ) and reduced scattering coefficient spectra (µs'(λ)) in the wavelength range of 500 to 850 nm is demonstrated by adjusting the concentrations of light absorbing carbon black powder (CBP) and light scattering titanium dioxide powder (TDP) added into the PDMS base material. APPROACH: The µa ( λ ) and µs'(λ) of the phantoms were obtained through measurements with a broadband integrating sphere system and by applying an inverse adding doubling algorithm. Analyses of µa ( λ ) and µs'(λ) of the phantoms, by fitting them to linear and power law functions, respectively, demonstrate that independent control of µa ( λ ) and µs'(λ) is possible by systematically varying the concentrations of CBP and TDP. RESULTS: Our technique quantifies the phantoms with four simple fitting parameters enabling a concise tabulation of their broadband optical properties as well as comparisons to the optical properties of biological tissues. We demonstrate that, to a limited extent, the scattering properties of our phantoms mimic those of human tissues of various types. A possible way to overcome this limitation is demonstrated with phantoms that incorporate polystyrene microbead scatterers. CONCLUSIONS: Our manufacturing and analysis techniques may further promote the application of PDMS-based tissue-mimicking phantoms and may enable robust quality control and quality checks of the phantoms.


Subject(s)
Dimethylpolysiloxanes , Humans , Phantoms, Imaging
2.
J Med Imaging (Bellingham) ; 8(5): 057501, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34660844

ABSTRACT

Purpose: Whole slide imaging (WSI) scanners produce tissue slide images with a large field of view and a high resolution for pathologists to use in diagnoses. Color performance tests of these color imaging devices are necessary and can use stained tissue slides if the color truth is established using a hyperspectral imaging microscopy system (HIMS). The purpose of this study was to estimate the reproducibility uncertainty of CIELAB coordinates for a reference tissue slide measured by both the HIMS and a WSI scanner. Approach: We compared the color performances of the WSI scanner to those of the reference established by the HIMS using the International Commission on Illumination (Commission Internationale de l'Éclairage, or CIE) 1976 Δ E a b * color difference with the just noticeable color difference (JNCD, Δ E a b * ≤ 2 ), and the results from the overlap of the CIELAB coordinates' uncertainty within the error bar, with a coverage factor k = 2 . The reported uncertainty results from measurements and image registration uncertainties. Results: For the blank area common to the HIMS and the WSI average images, the color agreement was higher using the JNCD condition versus the CIELAB uncertainty overlap criterion (82% and 20% of the pixels in the images, respectively). This difference is explained by the fact that numerous pixels have CIELAB coordinates near one another but corresponding to CIELAB uncertainty values small enough not to overlap. In the colored area of the images, the JNCD condition was met for 0.19% of the pixels in the images, compared with 4.3% for the CIELAB uncertainty overlap criterion. Conclusions: The distribution of uncertainties on the CIELAB coordinates was broader for the HIMS compared with the WSI scanner. The WSI scanner had a systemic error in the color reproduction, which pointed to a potential inadequate color calibration of this device.

3.
Biomed Opt Express ; 11(3): 1449-1461, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32206421

ABSTRACT

A whole-slide imaging (WSI) device is a color medical imaging system whose application in digital pathology is to digitalize stained tissue samples into electronic images for pathologists to diagnose without using a conventional light microscope. Testing the color performance of a WSI device usually implies a color target with known truth that is compared with the device output to estimate color differences. Using stained tissue samples as color targets is challenging because the cellular features cannot be measured with ordinary spectroradiometers unless a hyperspectral imaging microscopy system (HIMS) is used. The goal of this study is to determine the colorimetrical uncertainty of such a reference HIMS that is designed to assess the color performance of WSI devices. A set of optical filters are used for that purpose. The color truth, in terms of spectral transmittance in the visible band, of the optical filters is measured by a reference spectroradiometer. The spectral transmittance is combined with a standard illuminant to generate colorimetrical measures using the CIEXYZ and CIELAB formulas. The differences between the reference HIMS and the reference spectroradiometer are evaluated using the CIE 1976 color difference formulas.

4.
Biomed Opt Express ; 10(2): 571-583, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30800500

ABSTRACT

Phantoms simulating polarization characteristics of soft tissue play an important role in the development, calibration, and validation of diagnostic polarized imaging devices and of therapeutic strategy, in both laboratory and clinical settings. We propose to fabricate optical phantoms that simulate polarization characteristics of dense fibrous tissues by bonding electrospun polylactic acid (PLA) fibers between polydimethylsiloxane (PDMS) substrate with a groove. Increasing the rotational speed of an electrospinning collector helps improve the orientation of the electrospun fibers. The phantoms simulate the polarization characteristics of dense fibrous tissue of collagenous fibroma and healthy skin with high fidelity. Our experiments demonstrate the technical potential of using such phantoms for validation and calibration of polarimetric medical devices.

5.
Appl Opt ; 57(23): 6772-6780, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30129625

ABSTRACT

Vast research has been carried out to fabricate tissue-mimicking phantoms, due to their convenient use and ease of storage, to assess and validate the performance of optical imaging devices. However, to the best of our knowledge, there has been little research on the use of multilayer tissue phantoms for optical imaging technology, although their structure is closer to that of real skin tissue. In this work, we design, fabricate, and characterize multilayer tissue-mimicking phantoms, with a morphological mouse ear blood vessel, that contain an epidermis, a dermis, and a hypodermis. Each tissue-mimicking phantom layer is characterized individually to match specific skin tissue layer characteristics. The thickness, optical properties (absorption coefficient and reduced scattering coefficient), oxygenation, and perfusion of skin are the most critical parameters for disease diagnosis and for some medical equipment. These phantoms can be used as calibration artifacts and help to evaluate optical imaging technologies.


Subject(s)
Ear/blood supply , Optical Imaging/methods , Oxygen/blood , Phantoms, Imaging , Skin Physiological Phenomena , Animals , Biomimetics , Mice , Optical Devices
6.
Biomed Opt Express ; 9(1): 55-71, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29359087

ABSTRACT

We present broadband measurements of the optical properties of tissue-mimicking solid phantoms using a single integrating sphere to measure the hemispherical reflectance and transmittance under a direct illumination at the normal incident angle. These measurements are traceable to reflectance and transmittance scales. An inversion routine using the output of the adding-doubling algorithm restricted to the reflectance and transmittance under a direct illumination was developed to produce the optical parameters of the sample along with an uncertainty budget at each wavelength. The results for two types of phantoms are compared to measurements by time-resolved approaches. The results between our method and these independent measurements agree within the estimated measurement uncertainties.

7.
Opt Express ; 25(22): 26728-26746, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092156

ABSTRACT

Preliminary experiments at the NIST Spectral Tri-function Automated Reference Reflectometer (STARR) facility have been conducted with the goal of providing the diffuse optical properties of a solid reference standard with optical properties similar to human skin. Here, we describe an algorithm for determining the best-fit parameters and the statistical uncertainty associated with the measurement. The objective function is determined from the profile log likelihood, including both experimental and Monte Carlo uncertainties. Initially, the log likelihood is determined over a large parameter search box using a relatively small number of Monte Carlo samples such as 2·104. The search area is iteratively reduced to include the 99.9999% confidence region, while doubling the number of samples at each iteration until the experimental uncertainty dominates over the Monte Carlo uncertainty. Typically this occurs by 1.28·106 samples. The log likelihood is then fit to determine a 95% confidence ellipse. The inverse problem requires the values of the log likelihood on many points. Our implementation uses importance sampling to calculate these points on a grid in an efficient manner. Ultimately, the time-to-solution is approximately six times the cost of a Monte Carlo simulation of the radiation transport problem for a single set of parameters with the largest number of photons required. The results are found to be 64 times faster than our implementation of Particle Swarm Optimization.

8.
Proc SPIE Int Soc Opt Eng ; 97002016 Mar 24.
Article in English | MEDLINE | ID: mdl-27453623

ABSTRACT

The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.

9.
Proc SPIE Int Soc Opt Eng ; 99612016 Sep 01.
Article in English | MEDLINE | ID: mdl-35527792

ABSTRACT

Fused silica diffusers, made by forming scattering centers inside fused silica glass, can exhibit desirable optical properties, such as reflectance or transmittance independent of viewing angle, spectrally flat response into the ultraviolet wavelength range, and good spatial uniformity. The diffusers are of interest for terrestrial and space borne remote sensing instruments, which use light diffusers in reflective and transmissive applications. In this work, we report exploratory measurements of two samples of fused silica diffusers. We will present goniometric bidirectional scattering distribution function (BSDF) measurements under normal illumination provided by the National Institute of Standards and Technology (NIST)'s Goniometric Optical Scatter Instrument (GOSI), by NIST's Infrared reference integrating sphere (IRIS) and by the National Aeronautics and Space Administration (NASA)'s Diffuser Calibration Laboratory. We also present hemispherical diffuse transmittance and reflectance measurements provided by NIST's Double integrating sphere Optical Scattering Instrument (DOSI). The data from the DOSI is analyzed by Prahl's inverse adding-doubling algorithm to obtain the absorption and reduced scattering coefficient of the samples. Implications of fused silica diffusers for remote sensing applications are discussed.

10.
J Biomed Opt ; 20(12): 121310, 2015.
Article in English | MEDLINE | ID: mdl-26505172

ABSTRACT

There is a need for a common reference point that will allow for the comparison of the optical properties of tissue-mimicking phantoms. After a brief review of the methods that have been used to measure the phantoms for a contextual backdrop to our approach, this paper reports on the establishment of a standardized double-integrating-sphere platform to measure absorption and reduced scattering coefficients of tissue-mimicking biomedical phantoms. The platform implements a user-friendly graphical user interface in which variations of experimental configurations and model-based analysis are implemented to compute the coefficients based on a modified inverse adding-doubling algorithm allowing a complete uncertainty evaluation. Repeatability and validation of the measurement results of solid phantoms are demonstrated for three samples of different thicknesses, d = 5.08 mm, 7.09 mm, and 9.92 mm, with an absolute error estimate of 4.0% to 5.0% for the absorption coefficient and 11% to 12% for the reduced scattering coefficient (k = 2). The results are in accordance with those provided by the manufacturer. Measurements with different polarization angles of the incident light are also presented, and the resulting optical properties were determined to be equivalent within the estimated uncertainties.


Subject(s)
Diagnostic Imaging/standards , Optics and Photonics/standards , Phantoms, Imaging/standards , Algorithms , Anisotropy , Calibration , Humans , Lasers , Refractometry , Reproducibility of Results , Scattering, Radiation , United States
11.
Appl Opt ; 54(19): 6118-27, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26193162

ABSTRACT

The development of a national reference instrument dedicated to the measurement of the scattering and absorption properties of solid tissue-mimicking phantoms used as reference standards is presented. The optical properties of the phantoms are measured with a double-integrating sphere setup in the steady-state domain, coupled with an inversion routine of the adding-doubling procedure that allows for the computation of the uncertainty budget for the measurements. The results are compared to the phantom manufacturer's values obtained by a time-resolved approach. The results suggest that the agreement between these two independent methods is within the estimated uncertainties. This new reference instrument will provide optical biomedical research laboratories with reference values for absolute diffuse optical properties of phantom materials.


Subject(s)
Optical Devices/standards , Optics and Photonics/instrumentation , Optics and Photonics/standards , Algorithms , Anisotropy , Calibration , Light , Models, Statistical , Phantoms, Imaging/standards , Reference Standards , Reference Values , Scattering, Radiation , Spectroscopy, Near-Infrared , United States
12.
Quant Imaging Med Surg ; 5(1): 86-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25694958

ABSTRACT

PURPOSE: To assess oxygen saturation (StO2) in retinal vessels of normal subjects and diabetic patients with and without retinopathy using the modified version of the Flow Oximetry System (FOS) and a novel assessment software. METHODS: The FOS and novel assessment software were used to determine StO2 levels in arteries and veins located between 1 and 2 mm from the margin of the optic disc and in the macular area. RESULTS: Eighteen normal subjects, 15 diabetics without diabetic retinopathy (DM no DR), and 11 with non-proliferative diabetic retinopathy (NPDR) were included in final analysis. The mean [± standard deviation (SD)] StO2 in retinal arteries was 96.9%±3.8% in normal subjects; 97.4%±3.7% in DM no DR; and 98.4%±2.0% in NPDR. The mean venous StO2 was 57.5%±6.8% in normal subjects; 57.4%±7.5% in DM no DR; and 51.8%±6.8% in NPDR. The mean arterial and venous StO2 across the three groups were not statistically different (P=0.498 and P=0.071, respectively). The arterio-venous differences between the three study groups, however, were found to be statistically significant (P=0.015). Pairwise comparisons have demonstrated significant differences when comparing the A-V difference in the NPDR group to either normal subjects (P=0.02) or diabetic patients without DR (P=0.04). CONCLUSIONS: The arterio-venous difference was greater, and statistically significant, in patients with NPDR when compared to normal subjects and to patients with diabetes and no retinopathy. The mean venous StO2 was lower, but not statistically significant, in NPDR compared with diabetics without retinopathy and with normal subjects.

13.
Nano Lett ; 12(11): 5995-9, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23088734

ABSTRACT

By combining surface wrinkling and nanopatterned polymer films, we create anisotropic, hierarchical surfaces whose larger length-scale (wrinkling wavelength) depends intimately on the geometry and orientation of the smaller length-scale (nanopattern). We systematically vary the pattern pitch, pattern height, and residual layer thickness to ascertain the dependence of the wrinkling wavelength on the nanopattern geometry. We apply a composite mechanics model to gain a quantitative understanding of the relationship between the geometric parameters and the anisotropy in wrinkling wavelength. Additionally, these results shed light on the effect of surface roughness, as represented by the nanopattern, on the metrology of thin films via surface wrinkling.

14.
J Biomed Opt ; 17(7): 076014, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22894497

ABSTRACT

Optimal treatment of skin cancer before it metastasizes critically depends on early diagnosis and treatment. Imaging spectroscopy and polarized remittance have been utilized in the past for diagnostic purposes, but valuable information can be also obtained from the analysis of skin roughness. For this purpose, we have developed an out-of-plane hemispherical Stokes imaging polarimeter designed to monitor potential skin neoplasia based on a roughness assessment of the epidermis. The system was utilized to study the rough surface scattering for wax samples and human skin. The scattering by rough skin-simulating phantoms showed behavior that is reasonably described by a facet scattering model. Clinical tests were conducted on patients grouped as follows: benign nevi, melanocytic nevus, melanoma, and normal skin. Images were captured and analyzed, and polarization properties are presented in terms of the principal angle of the polarization ellipse and the degree of polarization. In the former case, there is separation between different groups of patients for some incidence azimuth angles. In the latter, separation between different skin samples for various incidence azimuth angles is observed.


Subject(s)
Scanning Laser Polarimetry/instrumentation , Scanning Laser Polarimetry/methods , Skin Neoplasms/pathology , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Early Diagnosis , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
15.
J Biomed Opt ; 15(5): 056014, 2010.
Article in English | MEDLINE | ID: mdl-21054108

ABSTRACT

We present a new method for the quantitative estimation of blood flow velocity, based on the use of the Radon transform. The specific application is for measurement of blood flow velocity in the retina. Our modified fundus camera uses illumination from a green LED and captures imagery with a high-speed CCD camera. The basic theory is presented, and typical results are shown for an in vitro flow model using blood in a capillary tube. Subsequently, representative results are shown for representative fundus imagery. This approach provides absolute velocity and flow direction along the vessel centerline or any lateral displacement therefrom. We also provide an error analysis allowing estimation of confidence intervals for the estimated velocity.


Subject(s)
Blood Flow Velocity , Diagnostic Techniques, Ophthalmological/instrumentation , Retinal Vessels/physiology , Confidence Intervals , Diagnostic Techniques, Ophthalmological/statistics & numerical data , Hemorheology , Humans , In Vitro Techniques , Laser-Doppler Flowmetry , Ophthalmoscopy , Optical Phenomena , Phantoms, Imaging , Tomography, Optical Coherence
16.
J Biomed Opt ; 14(6): 064008, 2009.
Article in English | MEDLINE | ID: mdl-20059246

ABSTRACT

Measurements of oxygen saturation and flow in the retina can yield information about eye health and the onset of eye pathologies such as diabetic retinopathy. Recently, we developed a multiaperture camera that uses the division of the retinal image into several wavelength-sensitive subimages to compute retinal oxygen saturation. The calibration of such instruments is particularly difficult due to the layered structure of the eye and the lack of alternative measurement techniques. For this purpose, we realize an in vitro model of the human eye composed of a lens, the retina vessel, and three layers: the choroid, the retinal pigmented epithelium, and the sclera. The retinal vessel is modeled with a microtube connected to a micropump and a hemoglobin reservoir in a closed circulatory system. Hemoglobin oxygenation in the vessel could be altered using a reversible fuel cell. The sclera is represented by a Spectralon slab. The optical properties of the other layers are mimicked using titanium dioxide as a scatterer, ink as an absorber, and epoxy as a supporting structure. The optical thickness of each layer of the eye phantom is matched to each respective eye layer.


Subject(s)
Oximetry/instrumentation , Phantoms, Imaging , Retina/metabolism , Choroid/metabolism , Hemoglobins/metabolism , Humans , Monte Carlo Method , Oximetry/methods , Retinal Pigment Epithelium/metabolism , Retinal Vessels/metabolism , Sclera/metabolism
17.
Opt Lett ; 33(2): 144-6, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18197220

ABSTRACT

We report on the optimization of a snapshot Mueller matrix polarimeter performed by using singular-value decomposition. The snapshot technique relies on wavelength polarization coding by four wave plates. The statistical noise on Mueller components is minimized through adjustment of the thickness of each plate. The spectrometer response and its cutoff frequency were considered to find the optimal configurations described here.

18.
Appl Opt ; 46(21): 4793-803, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17609729

ABSTRACT

A dual-rotating-retarder polarimeter was used to determine the six measurable observables of the first hyperpolarizability tensor. Calibration of such an instrument requires a reference sample dedicated to wavelength conversion. We calibrated our experimental setup by using a quartz-plate sample in a two step procedure: at first the first retarder then the second one. The retardance and ellipticity angle of both retarders were estimated by minimizing a chi(2) function. We estimated the standard deviation of each parameter from noise spreading and performed this calibration procedure for two experimental case studies, i.e., two angular positions of the quartz sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...