Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 9(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34944589

ABSTRACT

Background: Chief among mechanisms of telomerase reverse transcriptase (TERT) reactivation is the appearance of mutations in the TERT promoter. The two main TERT promoter mutations are C>T transitions located -146C>T and -124C>T upstream from the translational start site. They generate a novel Ets/TCF binding site. Both mutations are mutually exclusive and -124C>T is strikingly overrepresented in most cancers. We investigated whether this mutational bias and mutual exclusion could be due to transcriptional constraints. Methods: We compared sense and antisense transcription of a panel of TERT promoter-luciferase vectors harboring the -124C>T and -146C>T mutations alone or together. lncRNA TAPAS levels were measured by RT-PCR. Results: Both mutations generally increased TERT transcription by 2-4-fold regardless of upstream and downstream regulatory elements. The double mutant increased transcription in an additive fashion, arguing against a direct transcriptional constraint. The -146C>T mutation, alone or in combination with -124C>T, also unleashed antisense transcription. In line with this finding, lncRNA TAPAS was higher in cells with mutated TERT promoter (T98G and U87) than in cells with wild-type promoter, suggesting that lncRNA TAPAS may balance the effect of TERT promoter mutations. Conclusions: -146C>T and -124C>T TERT promoter mutations increase TERT sense and antisense transcription, and the double mutant features higher transcription levels. Increased antisense transcription may contain TERT expression within sustainable levels.

2.
Sci Rep ; 11(1): 7893, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846459

ABSTRACT

APOBEC3 (A3) enzymes are best known for their role as antiviral restriction factors and as mutagens in cancer. Although four of them, A3A, A3B, A3F and A3G, are induced by type-1-interferon (IFN-I), their role in inflammatory conditions is unknown. We thus investigated the expression of A3, and particularly A3A and A3B because of their ability to edit cellular DNA, in Systemic Lupus Erythematosus (SLE), a chronic inflammatory disease characterized by high IFN-α serum levels. In a cohort of 57 SLE patients, A3A and A3B, but also A3C and A3G, were upregulated ~ 10 to 15-fold (> 1000-fold for A3B) compared to healthy controls, particularly in patients with flares and elevated serum IFN-α levels. Hydroxychloroquine, corticosteroids and immunosuppressive treatment did not reverse A3 levels. The A3AΔ3B polymorphism, which potentiates A3A, was detected in 14.9% of patients and in 10% of controls, and was associated with higher A3A mRNA expression. A3A and A3B mRNA levels, but not A3C or A3G, were correlated positively with dsDNA breaks and negatively with lymphopenia. Exposure of SLE PBMCs to IFN-α in culture induced massive and sustained A3A levels by 4 h and led to massive cell death. Furthermore, the rs2853669 A > G polymorphism in the telomerase reverse transcriptase (TERT) promoter, which disrupts an Ets-TCF-binding site and influences certain cancers, was highly prevalent in SLE patients, possibly contributing to lymphopenia. Taken together, these findings suggest that high baseline A3A and A3B levels may contribute to cell frailty, lymphopenia and to the generation of neoantigens in SLE patients. Targeting A3 expression could be a strategy to reverse cell death and the generation of neoantigens.


Subject(s)
APOBEC Deaminases/metabolism , Lupus Erythematosus, Systemic/enzymology , APOBEC Deaminases/genetics , Adult , Cell Death/drug effects , Cohort Studies , Female , Gene Expression Regulation, Enzymologic , Germ-Line Mutation/genetics , Humans , Interferon-alpha/pharmacology , Lupus Erythematosus, Systemic/genetics , Male , Polymorphism, Single Nucleotide/genetics , Telomerase/genetics , Up-Regulation
3.
J Int AIDS Soc ; 22(9): e25384, 2019 09.
Article in English | MEDLINE | ID: mdl-31486251

ABSTRACT

INTRODUCTION: The chemokine receptor CCR5 is the main co-receptor for R5-tropic HIV-1 variants. We have previously described a novel 24-base pair deletion in the coding region of CCR5 among individuals from Rwanda. Here, we investigated the prevalence of hCCR5Δ24 in different cohorts and its impact on CCR5 expression and HIV-1 infection in vitro. METHODS: We screened hCCR5Δ24 in a total of 3232 individuals which were either HIV-1 uninfected, high-risk HIV-1 seronegative and seropositive partners from serodiscordant couples, Long-Term Survivors, or HIV-1 infected volunteers from Africa (Rwanda, Kenya, Guinea-Conakry) and Luxembourg, using a real-time PCR assay. The role of the 24-base pair deletion on CCR5 expression and HIV infection was assessed in cell lines and PBMC using mRNA quantification, confocal analysis, flow and imaging cytometry. RESULTS AND DISCUSSION: Among the 1661 patients from Rwanda, 12 individuals were heterozygous for hCCR5Δ24 but none were homozygous. Although heterozygosity for this allele may not confer complete resistance to HIV-1 infection, the prevalence of the mutation was 2.41% (95%CI: 0.43; 8.37) in 83 Long-Term Survivors (LTS) and 0.99% (95%CI: 0.45; 2.14) in 613 HIV-1 exposed seronegative members as compared with 0.35% (95% Cl: 0.06; 1.25) in 579 HIV-1 seropositive members. The prevalence of hCCR5Δ24 was 0.55% (95%CI: 0.15; 1.69) in 547 infants from Kenya but the mutation was not detected in 224 infants from Guinea-Conakry nor in 800 Caucasian individuals from Luxembourg. Expression of hCCR5Δ24 in cell lines and PBMC showed that the hCCR5Δ24 protein is stably expressed but is not transported to the plasma membrane due to a conformational change. Instead, the mutant receptor was retained intracellularly, colocalized with an endoplasmic reticulum marker and did not mediate HIV-1 infection. Co-transfection of hCCR5Δ24 and wtCCR5 did not indicate a transdominant negative effect of CCR5Δ24 on wtCCR5. CONCLUSIONS: Our findings indicate that hCCR5Δ24 is not expressed at the cell surface. This could explain the higher prevalence of the heterozygous hCCR5Δ24 in LTS and HIV-1 exposed seronegative members from serodiscordant couples. Our data suggest an East-African localization of this deletion, which needs to be confirmed in larger cohorts from African and non-African countries.


Subject(s)
HIV Infections/genetics , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Alleles , Cell Membrane/genetics , Cell Membrane/metabolism , Cohort Studies , Disease Resistance , Female , Guinea , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/physiology , Heterozygote , Humans , Infant , Kenya , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Mutation , Receptors, CCR5/metabolism , Rwanda , Sequence Deletion
4.
Virol J ; 15(1): 35, 2018 02 17.
Article in English | MEDLINE | ID: mdl-29454367

ABSTRACT

The cytoplasmic domain of lentiviral Envelopes (EnvCD) ensures Env incorporation into nascent virions and regulates Env trafficking to and from the plasma membrane. It has also been reported to promote transcription from the viral LTR both directly and indirectly. Noticeably, the HIV-1 and SIVmac239 EnvCDs were described to trigger nuclear translocation of NF-κB (Postler, Cell Host Microbes 2012). Given the paramount importance of identifying viral and host factors regulating HIV transcription, cellular signaling pathways and latency, and given that viral replication capacity is dependent on Env, we asked whether HIV EnvCDs from different HIV-1 subtypes differently modulated NF-κB. To that aim, we evaluated the ability of primary HIV-1 Envs from subtypes B and C to activate the NF-κB pathway. Primary subtype B and C Envs all failed to activate the NF-κB pathway. In contrast, when the EnvCD of HIV-1 Envs was fused to the the CD8-α chain, it induced ~ 10-fold increase in NF-κB induction, and this increase was much stronger with a truncated form of the HIV EnvCD lacking the 76 C-terminal residues and containing the proposed TAK-1 binding domain. Our results indicate that the HIV-1 EnvCD is unlikely to trigger the NF-κB pathway in its native trimeric form.


Subject(s)
HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , NF-kappa B/metabolism , Protein Interaction Domains and Motifs , env Gene Products, Human Immunodeficiency Virus/metabolism , Humans , Protein Binding , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , Virus Replication , env Gene Products, Human Immunodeficiency Virus/chemistry
5.
PLoS One ; 11(9): e0161596, 2016.
Article in English | MEDLINE | ID: mdl-27598717

ABSTRACT

The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.


Subject(s)
HIV Infections/transmission , HIV-1/genetics , Virus Replication/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , CD4-Positive T-Lymphocytes/virology , Cell Line , HIV Envelope Protein gp41/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Virion/genetics , Virus Internalization
6.
PLoS One ; 8(5): e60566, 2013.
Article in English | MEDLINE | ID: mdl-23667426

ABSTRACT

BACKGROUND: Human Immunodeficiency virus type-1 (HIV) entry into target cells involves binding of the viral envelope (Env) to CD4 and a coreceptor, mainly CCR5 or CXCR4. The only currently licensed HIV entry inhibitor, maraviroc, targets CCR5, and the presence of CXCX4-using strains must be excluded prior to treatment. Co-receptor usage can be assessed by phenotypic assays or through genotypic prediction. Here we compared the performance of a phenotypic Env-Recombinant Viral Assay (RVA) to the two most widely used genotypic prediction algorithms, Geno2Pheno[coreceptor] and webPSSM. METHODS: Co-receptor tropism of samples from 73 subtype B and 219 non-B infections was measured phenotypically using a luciferase-tagged, NL4-3-based, RVA targeting Env. In parallel, tropism was inferred genotypically from the corresponding V3-loop sequences using Geno2Pheno[coreceptor] (5-20% FPR) and webPSSM-R5X4. For discordant samples, phenotypic outcome was retested using co-receptor antagonists or the validated Trofile® Enhanced-Sensitivity-Tropism-Assay. RESULTS: The lower detection limit of the RVA was 2.5% and 5% for X4 and R5 minority variants respectively. A phenotype/genotype result was obtained for 210 samples. Overall, concordance of phenotypic results with Geno2Pheno[coreceptor] was 85.2% and concordance with webPSSM was 79.5%. For subtype B, concordance with Geno2pheno[coreceptor] was 94.4% and concordance with webPSSM was 79.6%. High concordance of genotypic tools with phenotypic outcome was seen for subtype C (90% for both tools). Main discordances involved CRF01_AE and CRF02_AG for both algorithms (CRF01_AE: 35.9% discordances with Geno2Pheno[coreceptor] and 28.2% with webPSSM; CRF02_AG: 20.7% for both algorithms). Genotypic prediction overestimated CXCR4-usage for both CRFs. For webPSSM, 40% discordance was observed for subtype A. CONCLUSIONS: Phenotypic assays remain the most accurate for most non-B subtypes and new subtype-specific rules should be developed for non-B subtypes, as research studies more and more draw conclusions from genotypically-inferred tropism, and to avoid unnecessarily precluding patients with limited treatment options from receiving maraviroc or other entry inhibitors.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV-1/physiology , Receptors, CXCR4/metabolism , Viral Tropism/physiology , Virus Internalization/drug effects , Algorithms , Cyclohexanes/pharmacology , Genotype , Humans , Luciferases , Maraviroc , Phenotype , Triazoles/pharmacology
7.
Antiviral Res ; 92(3): 488-92, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22020304

ABSTRACT

Entry of Human Immunodeficiency Virus type 1 (HIV-1) into target cells is mediated by the CD4 receptor and a coreceptor, CCR5 or CXCR4. Maraviroc interferes with HIV entry by binding the CCR5 coreceptor. Virological failure to maraviroc-containing regimens can occur through the emergence of resistance, or through tropism evolution and broadened coreceptor usage. In the latter case, the physiological relevance of minority strains is a major concern. Here we report a retrospective analysis of coreceptor-usage and evolution based on 454-ultra-deep-sequencing of plasma and Peripheral Blood Mononuclear Cell (PBMC)-derived envelope V3-loops, accounting for coreceptor usage, from a patient who failed a maraviroc-containing regimen through the emergence of X4 strains. The X4 maraviroc-escape variant resulted from recombination between a long time archived proviral sequence from 2003 (5'-portion, including the V3-loop) and the dominant R5 strains circulating in plasma at the time of maraviroc-treatment initiation (3'-portion). Phylogenetic analyses and BEAST modeling highlighted that an early diverse viral quasispecies underwent a severe bottleneck following reinitiation of HAART and repeated IL-2 cycles between 1999 and 2001, leading to the transient outgrowth and archiving of one highly homogeneous X4 population from plasma, and to the expansion in plasma of one PBMC-derived R5 strain. Under maraviroc selective pressure, the early, no longer detectable X4 strains archived in PBMC were partially rescued to provide X4-determinants to the main circulating strain.


Subject(s)
Cyclohexanes/therapeutic use , HIV Fusion Inhibitors/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , Triazoles/therapeutic use , Antiretroviral Therapy, Highly Active , Base Sequence , CCR5 Receptor Antagonists , CD4 Lymphocyte Count , Cyclohexanes/pharmacology , Genotype , HIV Fusion Inhibitors/pharmacology , HIV-1/classification , HIV-1/genetics , Humans , Leukocytes, Mononuclear/virology , Maraviroc , Microbial Sensitivity Tests , Molecular Sequence Data , Phylogeny , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Sequence Alignment , Treatment Failure , Triazoles/pharmacology , Viral Load , Viral Tropism
8.
PLoS One ; 6(7): e21535, 2011.
Article in English | MEDLINE | ID: mdl-21760896

ABSTRACT

Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1-HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1-HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1-HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1-HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy.


Subject(s)
Drug Resistance, Viral/genetics , HIV Envelope Protein gp41/pharmacology , HIV Fusion Inhibitors/pharmacology , HIV-1/genetics , Peptide Fragments/pharmacology , env Gene Products, Human Immunodeficiency Virus/genetics , Base Sequence , Drug Resistance, Viral/drug effects , Enfuvirtide , Genotype , HEK293 Cells , HIV-1/drug effects , HIV-1/pathogenicity , Humans , Inhibitory Concentration 50 , Phenotype , Phylogeny , Protein Structure, Secondary , Recombination, Genetic/genetics , Tropism/drug effects , Tropism/genetics , Virion
9.
AIDS ; 17(17): 2537-9, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14600528

ABSTRACT

We reassessed the infection ability of human primary preadipocytes. The use of X4, R5 or VSV-G-pseudotyped viral particles indicated that viral entry is the limiting step. However, transfection with HIV-1 receptors restored efficient infection. Analyses of CD4, CXCR4 and CCR5 expression on preadipocytes and adipocytes revealed that receptor co-expression levels did not permit HIV-1 entry into adipose cells from all biopsies tested. We concluded that adipose tissue cannot be infected with HIV-1 in vivo.


Subject(s)
Adipocytes/virology , HIV Infections/virology , HIV-1/pathogenicity , Transfection , Adipose Tissue/virology , CD4 Antigens/genetics , Gene Expression , HIV Infections/genetics , HIV-1/growth & development , HeLa Cells , Humans , Receptors, CCR5/genetics , Receptors, CXCR4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...