Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 9: 958751, 2022.
Article in English | MEDLINE | ID: mdl-36213395

ABSTRACT

Brazilian cattle production is mostly carried out in pastures, and the need to mitigate the livestock's greenhouse gas (GHG) emissions and its environmental footprint has become an important requirement. The adoption of well-suited breeds and the intensification of pasture-based livestock production systems are alternatives to optimize the sector's land use. However, further research on tropical systems is necessary. The objective of this research was to evaluate the effect of Holstein (HO) and Jersey-Holstein (JE x HO) crossbred cows in different levels of pasture intensification (continuous grazing system with low stocking rate-CLS; irrigated rotational grazing system with high stocking rate-RHS), and the interaction between these two factors on GHG mitigation. Twenty-four HO and 24 JE x HO crossbred dairy cows were used to evaluate the effect of two grazing systems on milk production and composition, soil GHG emissions, methane (CH4) emission, and soil carbon accumulation (0-100 cm). These variables were used to calculate carbon balance (CB), GHG emission intensity, the number of trees required to mitigate GHG emission, and the land-saving effect. The number of trees necessary to mitigate GHG emission was calculated, considering the C balance within the farm gate. The mitigation of GHG emissions comes from the annual growth rate and accumulation of C in eucalyptus trees' trunks. The CB of all systems and genotypes presented a deficit in carbon (C); there was no difference for genotypes, but RHS was more deficient than CLS (-4.99 to CLS and -28.72 to RHS ton CO2e..ha-1.year-1). The deficit of C on GHG emission intensity was similar between genotypes and higher for RHS (-0.480 to RHS and -0.299 to CLS kg CO2e..kg FCPCmilk-1). Lower GHG removals (0.14 to CLS higher than 0.02 to RHS kg CO2e..kg FCPCmilk-1) had the greatest influence on the GHG emission intensity of milk production. The deficit number of trees to abatement emissions was higher to HO (-46.06 to HO and -38.37 trees/cow to JE x HO) and to RHS (-51.9 to RHS and -33.05 trees/cow to CLS). However, when the results are expressed per ton of FCPCmilk, there was a difference only between pasture management, requiring -6.34 tree. ton FCPCmilk-1 for the RHS and -3.99 tree. ton FCPCmilk-1 for the CLS system. The intensification of pastures resulted in higher milk production and land-saving effect of 2.7 ha. Due to the reservation of the pasture-based dairy systems in increasing soil C sequestration to offset the GHG emissions, especially enteric CH4, planting trees can be used as a mitigation strategy. Also, the land-save effect of intensification can contribute to the issue, since the area spared through the intensification in pasture management becomes available for reforestation with commercial trees.

2.
Sci Rep ; 11(1): 14092, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238990

ABSTRACT

Climate change is a reality and global surface temperature is projected to rise substantially in the next 80 years. Agriculture practices will have to adapt to climate change, and also help to mitigate this effect using, among other strategies, forest conservation and management. Silvopastoral systems have been adopted in tropical climate livestock areas but their benefits on thermal comfort and reproductive performance of beef cows are not completely known. Therefore, our aims were to compare the microclimate of silvopastoral and intensive rotational unshaded grazing systems in different months and to evaluate physiological variables (Exp. 1 and 2), metabolism, and in vitro embryo production (Exp. 2) in crossbred beef females. Our hypothesis is that the silvopastoral system can improve the thermal comfort of beef heifers and cows and, consequently, also improve dry matter intake, body weight gain, and in vitro embryo production when compared to the unshaded rotational grazing system. In Exp 1, the silvopastoral system decreased body temperature and increased welfare and performance of heifers. In Exp. 2, the silvopastoral system enhanced the body weight but did not affect metabolism and the general reproductive performance, but increased the recovery rate of oocytes in primiparous cows.

3.
J Therm Biol ; 84: 121-128, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31466744

ABSTRACT

The monitoring of body temperature is important for the diagnosis of the physiological state of the animal, being dependent on available methods and their applicability within production systems. This work evaluated techniques to monitor the body temperature of beef cattle kept on pasture and their ability to predict internal temperature. Twenty-three adult bovine females were monitored for six months, and collection data carried out in eleven campaigns (D0-D10) twelve days apart. During collections, the surface temperatures of ear base (ET, oC) and ocular globe (OGT, oC) were measured by infrared thermography, and the subcutaneous temperature (ST, oC) was measured with the use of transponder containing an implantable microchip. Rectal temperature (RT, oC) was considered as a reference for body temperature. Temperature and Humidity Index (THI), Black Globe Temperature and Humidity Index (BGHI) and Radiant Heat Load (RHL, W/m2) were calculated. ET (33.32 ±â€¯0.12 °C), ST (36.10 ±â€¯0.07 °C), OGT (37.40 ±â€¯0.06 °C) and RT (38.83 ±â€¯0.03 °C) differed significantly (P˂0.05). There was positive correlation of RT with OGT (r = 0.392), ET (r = 0.264) and ST (r = 0.236) (P˂0.05). Considering the bioclimatic indicators, the highest magnitude correlations were observed between ET and THI (r = 0.71), ET and BGHI (r = 0.65), and ET and RHL (r = 0.48). The use of microchip represented a practical method, but with limited predictability. On the other hand, infrared thermography proved to be safe and non-invasive, presenting greater precision for inference of internal body temperature. ET was more influenced by meteorological conditions.


Subject(s)
Body Temperature , Cattle/physiology , Thermography/methods , Animals , Farms , Female , Humidity , Infrared Rays , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Temperature
4.
Sci Total Environ ; 684: 587-596, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31158622

ABSTRACT

Pasture-based livestock production is largely centered on monoculture systems that degrade grasslands. In integrated crop-livestock-forestry systems a synergy is supposed to occur between its components, contributing to global food production. Thus, this study aimed to evaluate the effects of the microclimate on integrated crop-livestock-forestry (CLF) and crop-livestock (CL) systems on the behavior and body surface temperatures of beef cattle in a tropical climate. The experiment was carried from December/2016 to June/2017. Adult beef cows were maintained in CL (n = 11) or CLF (n = 12) systems, permanently monitored by automatic weather stations. The microclimatic conditions indicated that CLF was more effective in mitigating the environmental heat load. Animals maintained in CLF showed favorable behavior, longer rumination (42.9 ±â€¯2.2 vs 36.6 ±â€¯2.2 min) and shorter resting time (57.6 ±â€¯2.7 vs 65.9 ±â€¯2.8 min) during the morning. The grazing time and other activities did not differ between treatments (P > 0.05) in the afternoon. Animals in CLF exhibited lower surface temperatures of the back (TBack: 31.9 ±â€¯0.2 vs 32.8 ±â€¯0.2 °C, P < 0.05) and of the trunk (TTrunk: 32.0 ±â€¯0.1 vs 32.5 ±â€¯0.1 °C, P < 0.05) measured by infrared thermography. Animals maintained in CLF showed a significant preferential use of shade and a 23% reduction in the frequency of the animals searching for water troughs. It is evident from the study that integrated crop-livestock-forestry systems can be used to provide a more favorable microclimate within grasslands. Thus, beef cattle benefits from the milder environment and exhibits a higher thermal comfort, which favors food production and the rational use of natural resources.


Subject(s)
Animal Husbandry , Body Temperature , Cattle/physiology , Motor Activity , Trees , Animal Husbandry/methods , Animals , Brazil , Female , Trees/growth & development
5.
Trop Anim Health Prod ; 51(8): 2481-2491, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31197722

ABSTRACT

Morada Nova breed sheep are without wool, tropicalized, small-sized animals, known for their high-quality meat and skin. Their body development naturally depends on the genetic potential and adequate nutritional support, which suggests that the offer of high-energy density diets positively influences their productive indicators. Thus, the present study investigated the effect of a high-energy diet for the Morada Nova lambs on body development and testicular function, considering their histomorphometric characteristics and seminal quality. Forty-two males (19.2 weeks, 20.7 ± 3.5 kg) were equally divided into two groups and fed with 2.05 Mcal (G7, n = 21) or 2.37 Mcal (G24, n = 21) of metabolizable energy/day, equivalent to 7% and 24% above the minimum for growing lambs. The animals were confined for 23 weeks (W0 to W23). Weight and body score differed significantly from the W1 (P < 0.05). From the W5, thoracic perimeter, body length, wither height, and rump attributes were higher in G24 (P < 0.05). The scrotal circumference and testicular volume were higher in G24 from the W3 (P < 0.05). Although testosterone levels were not affected (P = 0.05), the highest energy intake increased the diameter of the seminiferous tubules and the development of the epididymal epithelium (P < 0.05). This positively influenced the seminal quality and reduced the minor defects (21.87% vs. 17.13%) and the total spermatic defects (26.34% vs. 21.78%, P < 0.05). Thus, it is possible to employ higher levels of dietary energy for Morada Nova young males to express higher productive efficiency and earlier reproductive attributes of interest.


Subject(s)
Diet/veterinary , Energy Intake , Sheep/growth & development , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Energy Metabolism , Male , Reproduction , Scrotum/growth & development , Testis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL