Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nature ; 573(7773): 281-286, 2019 09.
Article in English | MEDLINE | ID: mdl-31485078

ABSTRACT

Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis1-4. They are also implicated in human developmental disorders and cancers5-8, supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies9-11. However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton-Brown-Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A. TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1, a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2)8,12,13), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and NSD1-mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans-chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA, Intergenic/metabolism , Histones/metabolism , Animals , Cell Line , DNA Methyltransferase 3A , Genome-Wide Association Study , Growth Disorders/genetics , Growth Disorders/physiopathology , Humans , Mice , Protein Binding , Protein Domains , Protein Transport , Sotos Syndrome/genetics , Sotos Syndrome/physiopathology
2.
Nature ; 567(7749): 473-478, 2019 03.
Article in English | MEDLINE | ID: mdl-30894748

ABSTRACT

Mutations in epigenetic pathways are common oncogenic drivers. Histones, the fundamental substrates for chromatin-modifying and remodelling enzymes, are mutated in tumours including gliomas, sarcomas, head and neck cancers, and carcinosarcomas. Classical 'oncohistone' mutations occur in the N-terminal tail of histone H3 and affect the function of polycomb repressor complexes 1 and 2 (PRC1 and PRC2). However, the prevalence and function of histone mutations in other tumour contexts is unknown. Here we show that somatic histone mutations occur in approximately 4% (at a conservative estimate) of diverse tumour types and in crucial regions of histone proteins. Mutations occur in all four core histones, in both the N-terminal tails and globular histone fold domains, and at or near residues that contain important post-translational modifications. Many globular domain mutations are homologous to yeast mutants that abrogate the need for SWI/SNF function, occur in the key regulatory 'acidic patch' of histones H2A and H2B, or are predicted to disrupt the H2B-H4 interface. The histone mutation dataset and the hypotheses presented here on the effect of the mutations on important chromatin functions should serve as a resource and starting point for the chromatin and cancer biology fields in exploring an expanding role of histone mutations in cancer.


Subject(s)
Cell Transformation, Neoplastic/genetics , Histones/genetics , Mutation/genetics , Neoplasms/genetics , Histones/chemistry , Histones/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Methylation , Neoplasms/pathology , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Domains/genetics , Protein Processing, Post-Translational
3.
Elife ; 72018 10 15.
Article in English | MEDLINE | ID: mdl-30320555

ABSTRACT

Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression and epigenetic events in specific cell types in a range of species, including postmortem human brain. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping and immunofluorescence localization. Studies of sixteen human postmortem brains revealed gender specific transcriptional differences, cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event evident in three donor samples. Our data establish a comprehensive approach for analysis of molecular events associated with specific circuits and cell types in a wide variety of human conditions.


Subject(s)
Neuroglia/cytology , Neurons/cytology , Age Factors , Animals , Antibodies/metabolism , Cerebellum/cytology , Chromatin/metabolism , Epigenesis, Genetic , Female , Gene Expression Profiling , Humans , Male , Mice , Neuroglia/metabolism , Neurons/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Postmortem Changes , RNA/metabolism , Rats , Regulatory Sequences, Nucleic Acid/genetics , Reproducibility of Results , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...