Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Pharmacol ; 75(10): 1388-1393, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37487573

ABSTRACT

OBJECTIVES: To evaluate the ability of the aqueous extract of Mitracarpus frigidus (MFAq) to inhibit lipid body formation and inflammatory mediator production in macrophages stimulated with lipopolysaccharide (LPS) and interferon gamma (IFN-γ). METHODS: MFAq was chemically characterized by ultrafast liquid chromatography/quadruple time-of-flight tandem mass spectrometry. The macrophages obtained from mice were incubated with MFAq. Cell viability and membrane integrity were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and propidium iodide assays, respectively. Moreover, NO, reactive oxygen species (ROS), transforming growth factor beta (TGF-ß), prostaglandin E2 (PGE2) levels and lipid bodies (LBs) were examined in macrophages that were stimulated with LPS and IFN-γ and treated with MFAq. Finally, molecular docking analysis was conducted to investigate the interaction of MFAq with the cyclooxygenase 2 (COX-2) enzyme. KEY FINDINGS: Chlorogenic acid, clarinoside, harounoside, rutin, kaempferol-3O-rutinoside and 2-azaanthraquinone were identified in MFAq. MFAq significantly inhibited NO, ROS and LBs, and did not affect the membrane integrity of macrophages. MFAq-treated cells showed significantly lower levels of TGF-ß and PGE2. Molecular docking demonstrated that the compounds found in MFAq are able to inhibit COX-2 by binding to important residues in the catalytic site. CONCLUSIONS: MFAq interferes with lipid metabolism in stimulated macrophages, leading to the reduction of important inflammatory mediators. Furthermore, MFAq can directly inhibit the COX-2 enzyme or inhibit its expression owing to its ability to reduce NO production.


Subject(s)
Dinoprostone , Lipopolysaccharides , Animals , Mice , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Lipid Metabolism , Molecular Docking Simulation , Interferon-gamma/metabolism , Transforming Growth Factor beta/metabolism
2.
J Pharm Pharmacol ; 74(5): 750-760, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35325209

ABSTRACT

OBJECTIVES: This study aimed to evaluate the potential of aqueous extract from Mitracarpus frigidus aerial parts (MFAq) in the treatment of inflammation and oxidative stress, as well as to characterize its chemical constituents. METHODS: Total phenolic and flavonoid contents were determined, and phytoconstituents were detected by ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-QTOF-MS). The antioxidant activity was evaluated by DPPH, TAC and ß-carotene/linoleic acid assays. In-vitro anti-inflammatory activity, cell viability and cell cycle were performed in J774A.1 cell line. In-vivo anti-inflammatory activity was investigated by two ear oedema assays (croton oil and phenol). KEY FINDINGS: Chlorogenic acid, clarinoside, quercetin-hexosylpentoside, rutin, kaempferol-3-O-rutinoside, kaempferol-rhamnosylhexoside, quercetin-pentosylrhamnosylhexoside, harounoside, 2-azaanthraquinone and sucrose were identified by UFLC-QTOF-MS. MFAq showed antioxidant activity, which was positively correlated to the content of phenolic compounds. MFAq significantly inhibited the production of nitric oxide, did not decrease viability in MTT assay (all concentrations) and showed no changes in membrane permeability and cell cycle of J774A.1 cell line. Furthermore, MFAq showed a reduction in ear oedema in all tested doses. CONCLUSION: MFAq was effective in some antioxidant and inflammatory parameters, in the experimental conditions that were used in the study. This is the first report of chemical composition and bioactivities from this extract.


Subject(s)
Rubiaceae , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Edema/chemically induced , Edema/drug therapy , Humans , Phenols/pharmacology , Plant Extracts/chemistry , Quercetin , Rubiaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...